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Chapter 1. Introduction 

In recent years, a series of space-based missions targeted at improving forest biomass 

estimates have been launched, providing global forest biomass density maps[1]. Space-

based forest biomass-related data have been produced through dedicated projects, such 

as ESA’s CCI BIOMASS, and missions such as NASA’s GEDI, and JAXA’s ALOS satellite 

series[2]. New satellite missions in operation from 2024 and 2025 include the ESA 

BIOMASS, JAXA ALOS-4, and the NASA/ISRO SAR (NISAR) missions, which have dedicated 

forest and biomass mission goals. Biomass estimates derived from data from these 

missions offer new possibilities for enhancing national forest monitoring systems and 

improving the accuracy and completeness of National Greenhouse Gas Inventory 

(NGHGIs) and Reducing Emissions from Deforestation and Forest Degradation (REDD+) 

reporting. There is growing interest in the use of this data to improve NGHGIs including 

REDD+ reporting[3], [4] and other related monitoring and reporting priorities.  

Despite the potential of space-based forest biomass-related datasets, their adoption 

within national systems remains limited. Key barriers include technical challenges in 

integrating space-based data with ground-based data, concerns about uncertainty and 

validation, and a lack of clear guidance on operational use. Many countries are unsure 

how to assess the readiness of space-based biomass products or apply them in a way 

that meets good practice for reporting estimates from space. The publication of the 2019 

Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[5], hereafter 

referred to as the 2019 Refinement, focused on general warnings to avoid potential 

misuse, however guidance on operational application has been limited to date. This rapid 
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response module aims to support informed decision-making related to operational uses 

of space-based forest biomass-related datasets and products within multipurpose 

National Forest Monitoring Systems.  

Chapter 2. Biomass maps created with Earth Observation 

Biomass maps created with space-based data can provide a representation of forest 

aboveground biomass density (AGBD), that is forest AGB stock per unit area for a point 

in time. While no space-based technology directly measures forest AGB stocks or stock-

changes, satellite sensors are sensitive to various biophysical properties of vegetation 

(Figure 2.1). Such biophysical properties (tree heights, greenness, water content, 

vegetation structure and density) are often closely related to the biomass content of 

vegetation, thereby allowing its indirect estimation with space-based data. 

 

 

 

Figure 2.1: Illustration of (a) Earth Observation images 

over forest and non-forest areas, (b) three common 

types of spaceborne and airborne Earth Observation 

sensors, and (c) radar wavelengths commonly used 

for forest monitoring[6]. Adapted from Joshi et al[7] 

 

The type of biophysical properties of vegetation sensed by space-based technologies is 

dependent on the wavelengths of electromagnetic energy used and/or detected by the 

satellite. Typically, optical sensors are sensitive to the spectral characteristics of the 

vegetation, while radar and lidar sensors collect data related to vegetation structural 

parameters. The different sensor types are thus complementary and are therefore 

commonly used in combination. The fundamental principle underlying the creation of 

AGBD maps from any sensor, or combination of sensors, is the calibration of the space-



  

 

3 

 
 

based measurements with forest-type-specific ground inventory data. Most commonly, 

the carbon pool estimated through Earth Observation (EO) is AGBD.  

Accurate ground inventories are necessary for the calibration and validation of any 

model, including those linking space-based data to forest AGBD. Space-based datasets 

serve simply as auxiliary data to the ground inventories for estimation of forest biomass. 

Therefore, the validity of models relating space-based and ground data are important to 

achieve accurate estimates for use in National GHG Inventories. The Committee of Earth 

Observations Satellite (CEOS) Aboveground Woody Biomass Product Validation[8] 

provides a synthesis of scientific consensus on good practices in biomass mapping and 

validation.   

  

Figure 2.2: Integration in-situ/EO for generation of modelled biomass and biomass maps. Input data, 

model-related processes and products are depicted in blue, orange, and green boxes, respectively 

Figure 2.2 outlines a generic process that results in space-based forest biomass-related 

data being appropriate for application in National GHG inventories. In the figure, optical 

(e.g., Landsat, Sentinel-2), radar (e.g., ALOS PALSAR, Sentinel-1), and/or lidar (e.g., GEDI, 

ICESat-2) are combined with ground reference data (field plots) to calibrate models that 

are used to predict biomass. Model diagnostics are assessed with commonly used error 
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metrics. Thereafter, predictions of biomass are made on a regular grid, represented 

visually as a biomass map.  

Challenges and limitations in creating AGBD maps exist for both space-based sensors and 

ground-based data. For example, optical sensors are affected by the complexity of forest 

crown layers and rely on cloud-free weather conditions. Radar signals transmitted at long 

wavelengths (L-band, P-band) are unaffected by cloud particles, but ground-topographic 

distortions can constitute possible limitations. Furthermore, both optical and radar 

sensors are susceptible to signal saturation at high AGBD levels. Similarly, lidar-predicted 

height used to develop AGBD estimates of one forest type may not be representative of 

vegetation with different structure and wood density. The availability of suitable and high-

quality ground-based data, or lack thereof, to calibrate models from space-based data 

can substantially affect both the estimates of forest AGBD and their associated 

uncertainty. Therefore, the validation of biomass maps is needed before their direct use 

in forest biomass estimation. Furthermore, global- or large-coverage biomass maps may 

be re-calibrated, and re-validated with independently collected local datasets, for a more 

complete and accurate representation of AGBD across the domain of interest. 
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Box 2.1: Open source global-scale biomass datasets 

Estimating forest AGBD for use in climate change mitigation efforts, including NGHGI, is a priority for 

several new and upcoming space agency missions, including the GEDI[9], NISAR[10], BIOMASS[11], ALOS-

4[12] and MOLI[13]. One of the primary goals of the missions is the uptake of their products for forest 

monitoring toward climate mitigation. Space agencies (such as NASA and ESA) have released a series of 

global or near-global coverage biomass datasets, with prediction techniques calibrated either directly with 

ground-plot data, airborne lidar datasets, and/or with AGBD compiled from various National Forest 

Inventory (NFI) reports (see Table 2.1; Hunka et al[14] describes the background approaches used in the 

generation of the datasets). This rapid response module provides a few country-case examples (see 

Appendix) where existing NFIs have been augmented with the use of these global space-based biomass 

datasets as auxiliary data sources. 

Table 2.1: Summary of two of open-source global-scale biomass datasets and their attributes 

  
Sensor 

Spatial 

resolution 

Geograhic 

coverage 

Temporal 

Coverage 
Uncertainty Reference Access 

NASA Global 

Ecosystem 

Dynamics 

Investigation 

(GEDI)  

LiDAR 

(GEDI) 

25-m footprints 

that are 60 m 

apart along-

track and 600 m 

apart across 

tracks.  

 

A gridded 1-km 

map product 

from GEDI is 

also available. 

Between 

52° N and 

52° S  

April 2019 – 

March 2023 

 

and  

 

April 2024 - 

to date 

Standard 

error of the 

predicted 

aboveground 

biomass at 

each 25-m 

footprint. 

 

The 1km 

gridded 

product has 

an uncertainty 

layer 

associated 

with it (based 

on hybrid 

inference) 

Dubayah et 

al[15] 

Available 

through 

Creative 

Commons 

Attribution 4.0 

International 

(CC-BY-4.0) 

  

ESA Climate 

Change 

Initiative (CCI) 

Biomass 

SAR 

(ALOS-1/-

2, 

Sentinel-

1, ASAR) 

and 

LiDAR 

(GEDI, 

ICESat) 

100 m Global 

2007, 2010, 

2015-2022 

 

Standard 

deviations 

(SDs) available 

as separate 

map products. 

Santoro et 

al[16] 

Available at 

ESA’s Open 

Data 

Portal[17] 
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Chapter 3. Application of space-based forest biomass-related estimates   

Considerations for the use of space-based forest biomass-related data in National GHG 

Inventories were first introduced in Chapter 2, Volume 4 of the 2019 Refinement[5]. The 

2019 Refinement was then complemented by the GFOI Methods and Guidance (MGD) v 

3.0[18], which elaborates on the use of these datasets in Section 4.3.1.2. Both the 2019 

Refinement and the MGD v 3.0 suggest possible applications and general considerations 

to improve the estimation of carbon emissions at higher Tier levels using space-based 

forest biomass-related estimates.  

Initially, exploratory uses considered pixel-level biomass values to estimate overall forest 

biomass in areas of interest, with emissions thereafter estimated when combined with 

activity data. However, to reduce uncertainties, for the most part, current applications 

aim to produce stratum-specific mean estimates and associated uncertainties of 

aboveground carbon stock, and in some cases emissions factors for land-use, land cover 

transitions including activities under REDD+.   

Here, we expand on the possible applications (Table 3.1), including the associated 

opportunities, challenges, and current level of maturity, as defined by the GFOI CALM 

criteria[19]. Guidance provided in this Module focuses only on applications that are 

considered Pre-Operational to Operational applying the CALM Criteria. 

Table 3.1: Opportunities, Challenges and Levels of Maturity of applications of space-based forest 

biomass-related estimates in NGHGIs 

Application Opportunities  Challenges Corresponding 

GFOI CALM 

Phase 

Enhancing NFI 

sampling designs  

through defining 

strata, or defining 

strata for 

reporting 

purposes 

 

 

- EO-based biomass information (e.g., 

biomass maps) can support the 

design of new National Forest 

Inventories (NFIs) or enhance existing 

NFI sampling schemes. Furthermore, 

stratified estimation for reporting 

purposes using sub-populations 

defined through space-based 

estimates can increase the precision 

of sample-based estimates.  

- For a country-case example, see 

Appendix 1, Example 5 (Zambia) 

 

- Using biomass maps for 

constructing NFI sampling 

designs should take into 

consideration 

objectives/variables beyond 

biomass estimation.  

- Post-stratification for reporting 

purposes requires an expertise 

to define sub-populations that 

adequately represent local 

biomass variations.  

- Using forest biomass-related 

data for stratification presents 

challenges if/when forest 

conditions change over time. 

This reflects a trade-off between 

achieving high short-term 

precision and ensuring long-

term robustness and flexibility in 

survey design. 

 

Operational 

https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch02_Generic%20Methods.pdf
https://www.reddcompass.org/mgd/en-3/s10s03s01s02.html#56885958
https://gfoi-rd.gfz.de/fileadmin/gfoird/documents/GFOI/4_GFOI_CALM_Criteria_1.0.pdf
https://gfoi-rd.gfz.de/fileadmin/gfoird/documents/GFOI/4_GFOI_CALM_Criteria_1.0.pdf
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Application Opportunities  Challenges Corresponding 

GFOI CALM 

Phase 

As auxiliary data 

for increasing the 

precision of 

aboveground 

carbon stock 

estimates in 

Forest Land 

derived primarily 

from ground 

data  

 

- Countries facing challenges in the 

implementation of their NFIs can 

consider the use of EO-based datasets 

as an auxiliary source of information 

to report at greater levels of precision 

than with exclusively NFI data. This is 

in line with IPCC good practice 

guidelines for NGHGIs, where it is 

good practice to reduce uncertainties 

as far as practicable (IPCC [20], 

Section 1.2).  

- Implementation challenges that can 

be addressed include but are not 

limited to: incomplete NFIs, 

inaccessible areas (i.e., gaps), limited 

funding for implementation.   

- Improved forest carbon stock 

estimates provide more precise pre-

deforestation values for calculating 

emission factors. 

- For country-case examples, see 

Appendix 1, Examples 1 (Peru, 

Guyana, Mozambique and 

Tanzania), 2 (Sudan), and 3 (Mexico) 

 

- Consistency is required between 

the activity data and biomass 

maps including definitions, 

geolocation, and spatial and 

temporal data characteristics.  

- Furthermore, the integration 

method should be fully 

supported by the initial 

conditions of the ground data, as 

specified in Chapter 5. 

Pre-

operational/ 

Operational 

Basis for directly 

estimating 

carbon stock 

values in Forest 

Land  

- EO-based biomass estimates could 

provide an initial assessment of 

carbon stock levels in forest land for 

reporting purposes. 

- Aggregating estimates at the regional 

level can help reduce the impact of 

pixel-level uncertainties in EO-based 

biomass products. Mean estimates 

from pixel values result in more stable 

and reliable biomass estimates at 

larger scales are produced.  

- Estimates derived from EO-based 

biomass information can provide pre-

deforestation values for calculating 

emission factors. 

- For a country-case example, see 

Appendix 1, Example 4 (Paraguay) 

 

- Ensuring compliance with good 

practice (see Chapter 4) can be 

challenging, which may hamper 

verification processes.  

- Enough reliable ground data will 

be necessary for validation.  

- Additionally, ground data used 

for calibration and validations of 

EO-based estimates must 

accurately represent the area for 

which direct estimation is 

conducted. 

- Post-deforestation carbon stock 

values cannot be inferred 

directly from EO-based forest 

biomass datasets. 

Pre-

operational/ 

Operational 

For comparison-

verification 

purposes 

- Earth Observation (EO)-based 

biomass estimates can serve as an 

independent and complementary 

data source to support a wide range 

of stakeholders in assessing reported 

forest biomass estimates. For 

example, Validation and Verification 

Bodies (VVBs) can use EO-based 

estimates to independently evaluate 

and verify the accuracy of biomass 

data reported in forest projects. 

- EO-based estimates used for 

comparison or verification need 

to be validated with high-quality 

reference data representative of 

the reported area. Note that the 

reference data used in the 

calibration and validation of 

these estimates should not 

consist of the same reference 

data used in reporting.        
- The quality of EO-based 

estimates needs to be 

Operational 
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Application Opportunities  Challenges Corresponding 

GFOI CALM 

Phase 

- For a country-case example, see 

Appendix 1, Example 6 (Nepal) 

comparable to the quality of 

reference data used for 

reporting. Good practice 

considerations in selecting EO-

based datasets or products are 

elaborated in Chapter 4.  

Basis for directly 

estimating 

biomass change 

through multi-

temporal EO-

based biomass 

estimates 

- Directly estimating biomass change 

would allow the monitoring of carbon 

stock changes from land cover change 

as well as Forest land remaining 

Forest land, considering processes 

such as degradation, regrowth, 

planting and harvest, as well as 

natural disturbances.   

 

- Requires an established time 

series of EO-based estimates. 

Though research advances in 

this field are promising, the use 

of multi-temporal EO-based 

biomass estimates is not 

recommended for reporting 

purposes due to requirements of 

consistent and well-validated 

biomass maps to accurately 

estimate biomass changes and 

their associated uncertainties, as 

well as of verification of 

estimated biomass stock 

changes  

- Systematic errors from multi-

temporal biomass estimates 

propagate and can cause 

significant errors if uncorrected.  

- Limited availability of ground 

reference data on biomass 

changes hamper the verification 

of this approach at national and 

subnational scales. 

Research 

Integrating EO-

based biomass 

estimates with 

time series of 

land use change 

and/or with Tier 3 

models. 

- In combination with EO-based land 

cover time series, using space-for-

time substitution, where spatial 

differences between forests of 

different ages or conditions are used 

as a proxy for temporal change, EO-

based biomass estimates could be 

used to estimate different spatial 

variations of forest carbon stocks. 

This use has potential for improved 

representations of complex forest-

related carbon fluxes.  

 

 

- This requires consistency 

between the various data 

sources including forest 

definitions and spatial and 

temporal data characteristics, as 

well as an established time 

series of EO-based land cover 

change, or knowledge of the 

forest age/management status 

at a scale consistent with the EO-

based biomass estimates.  

- Systematic errors from multi-

temporal biomass estimates 

propagate and can cause 

significant errors if uncorrected.  

- Limited availability of reference 

biomass stock changes ground 

estimates impede this approach 

from being verified over large 

areas and thus used for 

reporting purposes. 

Research 
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Box 3.1. Non-MRV uses for EO-based biomass estimation 

EO-based biomass estimation has proliferated as a tool to support management of natural resources not 

directly associated with climate change mitigation. While the purpose of this guidance is limited to the uses 

of these datasets for NGHGIs, here we highlight a few non-MRV uses: 

- In Peru, requests for forest removal follow guidelines[21] which consist of a regulatory framework to be 

assessed by forest and wildlife authorities. The objective of these guidelines is to ensure that the 

environmental impact of forest cover removal is minimized. To achieve this, a standardized methodology 

has been established for calculating the payment required for authorized deforestation. The calculation 

incorporates economic and biophysical variables to create a bioeconomic model that determines the 

payment amount for deforestation authorization. This model incorporates the quantification of forest 

carbon stocks, which is calculated using a national carbon stock map. 

- In Bolivia, timely information on forest fire prevention and management is a crucial resource for society. 

SATRIFO[22], the country’s wildfire monitoring and early warning system, provides data for fire 

prevention and control. Among its resources is an interactive tool that allows users to explore forest 

burn areas and fire risk zones, which can be overlaid with forest biomass estimates developed 

specifically for Bolivia[23]. By integrating these data sources into a visualization platform, SATRIFO 

enables broad public access to information on forest fire prevalence and the associated biomass content 

in affected areas. 

- The Congo Basin is the largest forest ecosystem tract in Africa, storing a vast amount of biodiversity, 

while at the same time being inhabited by over 30 million inhabitants. Quantifying the ecological 

condition of forests is thus important for its sustainable management. Shapiro et al[24] mapped Forest 

Condition (FC), a metric aimed to quantify the degree of forest degradation, by integrating mainly EO-

derived datasets ecological, physical and forest characteristics in the region, including a national forest 

biomass dataset derived from airborne lidar and satellite imagery for the Democratic Republic of the 

Congo[25]. This exercise provided a methodological approach for assessing the condition of forests, 

which can be used for assessing ecosystem risk under the IUCN Red List of Ecosystems framework.  

 

 

Chapter 4. Good practice considerations 

Adopting Tier 2 Methods 

The adoption of aboveground carbon stock values (for the stock difference method) can 

be at a Tiered level as defined in the IPCC Guidelines. The 2006 IPCC Guidelines[26] 

Volume 1, Section 2.2.4 highlights what constitutes a Tier 1 and Tier 2 estimation. 

Specifically, Tier 1 is the application of the default methods and supporting carbon-stock-

change values / emissions factors in the Guidelines. Tier 2 is defined as the use, together 

with the default or an enhanced method, of carbon stock change values or emission 

factors that better reflect national circumstances, derived from (a) literature values, (b) 

the IPCC Emission Factor Database values, or (c) nationally obtained measurement data. 

Tier 2 methods involve consideration of country-relevant or specific data and greater 

disaggregation to reflect national circumstances. As a result, Tier 2 methods are typically 

more accurate when compared to Tier 1. Space-based data and modelling tools are 

acceptable Tier 2 methods if they are calibrated and validated with nationally-relevant 

ground data (2019 Refinement[5] Volume 4, Chapter 2). Jurisdictional programme 

https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch02_Generic%20Methods.pdf
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requirements for REDD+ can take on a more defined approach when it comes to what 

constitutes Tier 2 values, with higher requirements for demonstration of National 

relevance and a focus on data obtained from measurements[27], [28]. 

Developing or Selecting Models 

The generation of AGBD estimates from space-based datasets rely on models. The use of 

a model does not replace the need to collect ground data for calibration or validation (see 

2019 Refinement[5] Volume 4, Chapter 2). The 2019 Refinement also notes the difficulties 

of aligning space-based biomass products with national definitions and that these 

datasets can display significant systematic errors in estimation of carbon stock. When 

developing or selecting any model for inclusion in NGHGI reporting, the 2019 Refinement 

notes the following is good practice:   

- adequate representation of the range of land uses, ecosystems and 

management practices in the region or country for which the model will be used 

In opting to use AGBD values derived from space-based data the following 

considerations should be made:  

o data availability through time and space, resolution, and limitations of the 

method/product (e.g., saturation issues in dense forests). 

o consistency with the National Forest definition. 

o consistency with activity data characteristics such as land use classes, 

ecozones, among others, to enable integration and the generation of 

consistent, emissions/removals estimates; specifically, the 2019 Refinement 

notes: it is “good practice to demonstrate how the (biomass density) maps are 

consistent with national land-use classification system, in particular how they are 

integrated with the land-use data chosen by the country”.  

o representative of the range of AGBD values within the area of interest. In line with 

IPCC Guidelines, seeking local expert judgement is desirable, in this case on AGBD 

values of the region’s biomes and vegetation types. 

Validation of any data, including space-based forest biomass-related data, at the 

relevant scale is strongly recommended before their direct use in forest biomass 

estimation. Such validation can contribute to the assessment of whether such data 

meet user needs before relying on these for estimation.  

Furthermore, these data may be re-calibrated with local datasets to develop Tier 2 

estimates that more accurately predict forest biomass in the domain of interest. It is 

good practice to ensure that models are calibrated and modelled predictions are 

assessed for accuracy against ground measurements aimed at reducing 

uncertainties as far as practicable. 

- allow for the estimation of uncertainty  

The uncertainty of the estimates inferred from the model predictions, as well as the 

inherent uncertainties of the model itself, should be characterized and reported 

https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch02_Generic%20Methods.pdf
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transparently. This includes how the estimates are produced. The following 

information is to be provided by the model producer: 

o documentation describing ground data used in the model calibration and 

validation, including means of any quality assessment  

o description of how bias was/can be assessed and removed  

o any systematic prediction errors within areas of interest identified using 

available ground data (systematic over- or under estimation) (Box 4.1)    

o documented assumptions (inclusions and exclusions) and 

explanations/justifications for them 

o description of how the model could be used to improve estimates from ground 

data. 

Box 4.1: Comparing (sub)national NFI-based estimates to a global biomass map 

 

In Peru, Málaga et al[29] compared AGBD estimates from the 2017 European Space Agency Climate 

Change Initiative (CCI) biomass map (v3) to the country’s ground data across four strata in the Peruvian 

Amazon: hydromorphic zone (HZ), accessible montane forest (AMF), inaccessible montane forest (IMF), 

and lowland forest (LF). The study assessed the extent to which the global map, used as auxiliary 

information, could enhance the precision of (sub)national forest AGBD estimates. When comparing 

stratum-wise AGBD estimates from the uncalibrated version of the map (i.e. more specifically, the synthetic 

estimator) with NFI-based direct estimates, results showed systematic overestimation by the global map. 

While NFI-based means ranged from 218–254 Mg ha⁻¹, map estimates ranged from 243–385 Mg ha⁻¹. As 

shown in the figure below, stratum-wise v3 map AGBD estimates were always greater than NFI-based 

AGBD mean estimates and their corresponding confidence intervals. 

 

The CCI biomass map showed improvements in version (V4), which were observed in a later study[30]. 

Across all four strata, no systematic error was observed between the 2017 CCI v4 map estimates and NFI-

based AGBD estimates. Such examples highlight the importance of comparing and calibrating biomass 

map predictions with ground-based estimates, while also helping map producers identify product 

limitations and improve the accuracy of their products. 

 
 

- can be maintained in an operational context with available time and resources 

(e.g., input data is readily available, staff have sufficient experience and 

knowledge, suitable compute infrastructure is available) 

Developing biomass models can be data processing and resource/skills heavy, 

especially for annual reporting cycles required for National GHG Inventories. If using 

EO based biomass density estimates for various forest types (e.g., open and closed 

forest), it may be that generating new models is not something that needs to be 

repeated in each inventory cycle, while instead repeated periodically as for NFIs. 
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Other use cases may require deeper consideration if such processes are to be 

repeated every GHG inventory cycle.    

- produce outputs that can be used for reporting emissions and removals by 

relevant land-use categories 

When using data from biomass density maps in a NGHGI, it is important to ensure 

spatial alignment between biomass datasets and national land-use classifications. 

Reporting of biomass C stock change estimates from forest land, and forest land 

conversions, requires gain and loss or stock change factors. Stock change factors (as 

generated by NFI data) rely on carbon stock being measured at least two points in 

time. Carrying out a comparable process using exclusively biomass density maps is 

not considered operational (Table 3.1). However, where there is a land use change 

from forest land to non-forest land, enhanced estimates from or with biomass maps 

can inform the pre-deforestation carbon stock. This applied with Tier 1 stocks from 

the post land use can generate the emissions factor required which is aligned with 

the gain and loss method; noting that the direct generation of removals factors from 

exclusively EO based biomass data are not yet considered operational. 

    

- are well documented and tested 

Documentation leads to ownership, control, consideration of trustworthy data and 

transparency which is core to consistency and continuity in National GHG Inventories. 

It is also fundamental to third party review. 

Depending on the application, the 2019 Refinement highlights that additional 

metadata from models and parameters used to generate biomass maps may be 

required to characterise and fully report how bias and precision are addressed. 

The following should be considered to achieve the principles of transparency: 

o document the qualities of the model to demonstrate that it is fit for purpose.  

o document the calibration procedure and results. 

o provide clear metadata on data sources, methodologies, and assumptions 

(exclusions and inclusion). 

o document bias correction procedures and assessment of uncertainty. 
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Chapter 5. How to meet good practice for operational use cases 

Ensuring compliance with good practice implies obtaining an accurate estimate of forest 

biomass/carbon while minimizing uncertainties as far as practical. The manner in which 

space-based biomass maps can be used for obtaining biomass estimates is dictated by 

the availability (or lack thereof) and quality of reference data, and the sampling designs 

by which these data were collected. Ground reference data from NFIs, for example, may 

be augmented with biomass maps as auxiliary data sources, but the approach taken to 

the statistical inference will vary based on the completeness and representativeness of 

the reference data and the sampling design used to acquire it. 

This chapter presents a decision tree (Figure 5.1) to guide countries in ways of enhancing 

biomass/carbon estimates based on the availability and quality of their reference data 

(e.g., from an NFI, and referred to as ‘observations’ in the following text), reflected in 

different scenarios. The following paragraphs first describe the inferential 

methodological scenarios. They are then followed by descriptions of the actions and 

decisions (Figure 5.1) needed to be made before using a recommended inferential 

technique. In support of the decision tree, Figure 5.2 illustrates a geographical 

distribution of observations and ways in which the sample units may be missing. 
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Figure 5.1: Decision tree showing the process of selection of a method to enhance estimates of forest biomass across an Area of interest 

(AOI). The “risk of bias” arrow bar applies to the “Decisions” (e.g., Decision 3 carries less risk of bias in comparison to Decision 8).
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Box 5.1 - Scenarios: Methodological approaches for enhancing biomass estimates 

with the use of space-based biomass maps 

 

Scenario 1: With this scenario, the primary purpose is to use the biomass map as 

auxiliary data to increase the precision of the estimate of the population mean. The 

model-assisted estimator uses the map unit values as the model-predictions and 

the reference data as the observations. The post-stratified estimator uses the 

biomass map as the source of auxiliary stratification data.   

o A post-stratified estimator. A common approach is to divide the biomass 

map values into a small number (3-6) of groups or strata.  Each map unit is 

assigned to the stratum corresponding to the map unit value, and each 

sample unit is assigned to the stratum of the map unit containing the sample 

unit center. Possible stratifications include constructing strata so that each 

represents the same proportion of the sample or so that each represents an 

equal division of the range of map values. Post-stratified estimators can 

improve precision when the variability of the population within each stratum 

is less than the total variability of the population. In the case of a stratified 

random sample, post-stratification should take place within strata. Key 

constraints are that each post-stratum (the final strata) should have at least 

10 and preferably 20 sample units and that the sampling intensity within 

each post-stratum is constant. Most often, the simple expansion 

estimators are used for within-stratum estimation, but the model-assisted 

estimators could also be used. 

o A model-assisted estimator of the population mean consists of the sum of 

a prediction-based term (the synthetic estimator) and a residual-based 

adjustment term (based on the differences between the reference data and 

their location-corresponding map predictions). The model-assisted 

difference estimator uses the map unit values directly as the model 

predictions and the reference data as the observations. In addition, 

uncertainty in the model-assisted and post-stratified estimates resulting 

from uncertainty in the map could be reduced by calibrating the map, i.e., 

by constructing a model of the relationship between the reference data as 

the dependent variable and the map values as the independent variable and 

then applying the model to predict a new value for each map unit. Model 

assisted estimators can improve precision when the variance of the 

residuals (the difference between the reference data and predictions) is less 

than the variance of the reference data.   

References:  Cochran, 1977[31, p. 198], pp. 134; Westfall et al, 2011[32]; 

Næsset et al, 2011[33]; McRoberts et al., 2022[34], Málaga et al., 2022[29]. 

 

Scenario 2 : Use a spatial layer as a source of auxiliary data to divide the population 

into relevant sub-populations.  Examples include use of a layer representing 

administrative regions, a land cover layer, a forest type layer, or climatic or 



  

 

16 

 
 

topographic layers. As for Scenario 1, the model-assisted difference estimator could 

be used within strata to further increase the precision of estimates and/or the map 

could be calibrated before application of the post-stratified or model-assisted 

estimators (see dashed line to Scenario 1).   

 

Scenario 3: This scenario groups the sample units with incomplete observations 

into a single or small number of strata. Estimates for the strata without missing 

observations can be calculated using the simple-expansion or model-assisted 

estimators, as described above. Estimates for strata with incomplete observations 

must be calculated independently from the other strata. A general approach would 

be to enter the decision tree at Start (see Figure 5.1), following the recommended 

inference techniques just for the stratum with incomplete observations. If a model-

based approach is taken, only existing observations within the strata of interest 

must be used to obtain estimates of the strata means and variances. Once 

estimates for all strata are obtained, estimates are combined to produce the 

population mean estimate through post-stratified estimators.  

References: Cochran, 1977[31], p. 134; Westfall et al, 2011[32]. 

 

Scenario 4: In this scenario, model-based inference is recommended when either 

the reference data are not available (Decision 8), or if available, the reference data 

are not a probability sample (Decision 7). The population mean is estimated using 

the standard model-based synthetic estimator, expressed as the mean over all map 

unit predictions. To estimate the variance of the mean estimate, the user requires 

map unit variances and pairwise map unit covariances throughout the population.  

o When reference data are available (Decision 7): In the context where the 

reference data may not constitute a probability sample, but the sample is 

nevertheless fairly balanced across the whole area of interest, or adequately 

represents the whole range of the distribution of AGBD expected, the 

population mean and variance are estimated using model-based estimators. 

Under the model-based approach, a model is fitted using the reference data 

as the dependent variable and auxiliary variables (such as space-based 

biomass maps) as the independent variables. The fitted model is then used 

to predict biomass values for each map unit within the area of interest. Here, 

rather than relying on the underlying probability-based sample of reference 

data, the validity of inference is determined by the model's distributional 

assumptions. Several studies have investigated parametric and non-

parametric approaches, used hierarchical, mixed-effects or geostatistical 

models, conducted inference in frequentist or Bayesian domains, hybrid 

inference, amongst others. For simpler models, such as linear regression, 

explicit formulas may be available for the estimation of map unit variances 

and pairwise map unit covariances. For more complex models where explicit 

formulas are not available, simulation based approaches such as bootstrap 

and Monte Carlo methods, amongst others, can be a viable option to 
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estimate the (co)variances. Model-based inference is considered conditional 

on the reference data - the risk of bias is lesser when reference data of 

suitable quality and distribution are available.  

o When reference data are not available or not being used (Decision 8): the 

risk of bias increases. In such a case, (co)variances provided by the map 

maker or estimated during the construction of the map at Action 1, could be 

used for estimating the variance of the estimate of the mean.  

References:  Ståhl et al, 2011[35]; Brus and de Gruijter, 1997[36]; Babcock, 

2015[37]; Babcock, 2018[38]; McRoberts et al, 2018[39]; McRoberts et al, 2022[40]; 

Emick, 2023[41]; May, 2023[42] 

 

Scenario 5: With this scenario, the use of biomass maps is not considered 

appropriate because reference data cannot be used to assess the validity of the 

map or used to calibrate it. Alternative methods should be investigated, such as the 

2006 IPCC guidelines guidance on Tier 1 and Tier 2 methods[26]. 

 

Actions and Decisions, as detailed in Figure 5.1, required prior to implementing a 

recommended inferential method.  

Action 1:  The user either selects an existing biomass map or constructs a new map based 

on user-acquired reference and auxiliary data. In the latter case, map unit variances and 

covariances are estimated directly when constructing the map. When relying on existing 

maps, the decision of which space-based biomass map to select for the described 

approaches must be made by the user. It is recommended that several existing maps be 

tested by the user, before selecting one that best meets the user’s requirements (e.g. 

selecting the map that most increases precision of estimates, the accuracy of model-

based predictions, etc.).  

Decision 0: Do you have and want to use a reference sample for the area of 

interest? 

A reference sample is usually a set of observations with negligible uncertainty 

used for training prediction techniques, uncertainty estimation, resampling, or 

map calibration. For design-based inference (including post-stratified and model-

assisted estimators), reference samples are required.  For model-based inference, 

reference samples are preferred but not strictly required, with the requirement 

that map unit variances and pairwise covariances estimated using data for the AOI 

are available.  

Decision 1: Do you have a probability sample for the AOI? 

Probability samples are required for design-based inference whose primary 

advantages are twofold. First, estimators of the population mean are unbiased, 
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meaning that over all possible samples that could be realized with the sampling 

design, the average of estimates of the mean equals the true value. However, even 

with an unbiased estimator the estimate of the mean for any particular sample 

may still deviate substantially from the true value, thus the role of the confidence 

interval. The second advantage is that estimators of the variance are usually less 

complex and less computationally intensive than for model-based inference. In 

general, design-based inference is preferred. This is illustrated by the gradient-

coloured arrow in Figure 5.1, where the risk of bias decreases toward the left side 

of the tree, corresponding to decisions where a probability sample is available and 

design-based inference is prioritized. Probability sample designs include simple 

random sampling, systematic sampling, and variations of cluster or two-stage 

sampling with simple random or systematic sampling in the first stage. If the area 

of interest is a sub-region of the complete map region, design-based inference 

requires a probability sample of sufficient size for the area of interest, not just the 

complete map region. 

Decision 2:  Is the reference sample complete? 

For a variety of reasons, probability samples may be missing observations.  The 

key issue is whether the missing observations compromise the probability nature 

of the sample and whether the realized sample size is sufficient to achieve the 

desired precision of the estimate. Figure 5.2 illustrates a complete probability 

sample alongside subsequent cases with missing observations 

Decision 3: Do you want sub-population estimates? 

Often, estimates for sub-populations may be desired. These may often be activity 

classes and administrative regions, but also specific land cover, climatic, 

topographic, or forest type classes. If so, a digital geo-spatial layer that depicts the 

boundaries of the sub-populations must be available to intersect with the biomass 

map. 

Decision 4:  Are the missing observations missing at random? 

A probability sample with observations missing at random still is considered a 

probability sample. In this context, missing ‘at random’ means that the missing 

observations are unrelated to any observed or unobserved data and/or have no 

systematic relationship with any other relevant factors such as map values, 

climatic or topographic variables, land cover types etc.  

Decision 5:  Is the number of missing observations relatively small? 

In some cases, the number of missing observations is small in comparison to the 

total sample size (Figure 5.2). The key issue is whether the reduced sample size is 

still sufficient to achieve the desired precision, even when the post-stratified or 
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model-assisted estimators that use the map as auxiliary data are used to increase 

precision. 

Action 2:  The user applies an imputation technique to obtain biomass estimates or 

predictions for the missing observations. Imputation in this setting may involve methods 

such as substituting missing values with averages or values from comparable plots, or 

techniques that rely on models or external information from EO data. For example, 

regression can make use of known tree or stand attributes to fill in gaps in biomass data, 

and nearest neighbor methods select values based on similarities to other observed 

plots. For more complex cases, hierarchical or multiple imputation approaches may 

incorporate extra sources of information and allow for better characterization of 

uncertainty (see, e.g., Little & Rubin 2019). Further guidance on imputation techniques 

and the use of model-based approaches (e.g., those resulting from Scenario 4) to 

generate predictions when dealing with nonresponse can be found in the GFOI Methods 

and Guidance (MGD) v3.017. Following the imputation step, either the post-stratified or 

model-assisted estimator as described in Scenario 1 can be used. However, the 

uncertainty of the imputations must be incorporated into the overall estimate of the 

variance of the estimate of the population mean, though operational examples on the 

subject still need to be explored. If the uncertainty of the imputations is small, the 

increase in sample size achieved by imputing for the missing observations may decrease 

the variance and increase the precision of the estimate of the mean. If the uncertainty of 

the imputations is large, no increase in precision may be realized; in fact, the precision 

could be less than for estimates obtained without imputing for the missing observations.  

References:  Rubin, 1987[45]; Eskelson et al., 2009[46];  McRoberts, 2001[47]; Little & Rubin, 

2020[48]. 

Decision 6:  Can sample units with missing observations be grouped into strata?  

In some cases, the missing observations can be confined to some specific areas. 

The key issue is whether the missing observations can be confined to portions of 

the population that can be readily geographically delineated such as 

administrative, topographic or climatic regions, or land cover or forest type classes 

(see Figure 5.2).   If so, then estimates can be obtained as described in Scenario 3.   

Decision 7:  Does the sample represent the area of interest? 

If the missing observations severely compromise the probability nature of the 

sample (Figure 5.2), then model-based inference, which does not rely on 

probability samples, may be suitable. An important consideration of model-based 

inference is that the estimator of the mean is not necessarily unbiased. Sample 

balance (characterized by means and variances of the independent variables in 

the sample that are comparable to the means and variances in the population) 

assures that the sample represents the area of interest and provides a measure 

of protection against such bias. Local expert knowledge of the biomes and 

vegetation types in the region may assist to assess the representativeness of the 
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sample in the area of interest.  If the area of interest is a sub-region of the 

complete map region, model-based inference requires a sample that is 

representative of the area of interest and/or map unit prediction variance and 

pairwise covariance estimates for the area of interest, not just the complete map 

region. 

Decision 8: Did the map-maker provide map unit variances and covariances? 

The 2006 IPCC guidelines[26] advises that estimates be accurate in the sense that 

they are neither over- nor underestimated as far as can be judged, and precise in 

the sense that uncertainties are reduced as far as practicable. To do so, 

uncertainty in the form of variance must first be correctly estimated. With model-

based inference, correct estimation of the variance of the population mean 

requires the variances of the predictions for all individual map units and the 

covariances of the predictions for all pairwise combinations of map units. To 

reduce the risk of bias, the data used to estimate the map unit variances and 

covariances must represent the particular area of interest, rather than just the 

complete map region or an entirely different region altogether. 

Decision 9:  Can reference data be collected? 

When all possible options of calibrating or validating biomass maps using the 

recommendations of the decision tree are exhausted, the user is encouraged to 

collect ground reference data. As ground data is obtained, the approach would be 

to enter the decision tree at Start (see Figure 5.1) and follow the recommendations 

as needed. 

 

 Figure 5.2: Visual representation of observations completeness and missingness at 

decision points in the tree. Orange dots show available observations, blue dots represent 

missing observations, overlaid on a topographic layer. 

  

                     

      

                

             

                 

                

      

                     

                    

                    

                                                  

                

             

                 



  

 

21 

 
 

Chapter 6. Summary 

Recent advances in space-based technologies have enabled the generation of large-area 

biomass maps that offer potential to enhance national forest monitoring systems to 

produce NGHGI, including REDD+ reporting. These products can improve spatial 

coverage of biomass estimates, particularly in remote or under-sampled areas, and 

support improved stratification and independent validation of forest biomass 

assessments. 

Biomass maps developed from space-based data can: 

support the design and enhancement of National Forest Inventories (NFIs). 

- improve estimation accuracy in regions lacking sufficient ground data. 

- serve as an independent reference in support of verification of biomass estimates 

where the map-based estimates are of comparable quality with the estimate being 

verified. 

- contribute to broader forest and ecosystem monitoring beyond climate mitigation 

frameworks. 

However, limitations and constraints to consider include:  

- pixel-level biomass estimates are not recommended for reporting purposes. 

- ground data are required for calibration and validation, as well as for verification of 

biomass stock change estimates, and for evaluating model performance over time. 

- global and regional biomass products may require re-calibration at the national or 

subnational level to be fit-for-purpose. 

To ensure alignment with IPCC good practice and to enable robust integration into 

national systems, the following requires consideration: 

- Consistency with national forest definitions, land-use categories, and stratifications. 

- Calibration, validation and verification with locally representative ground data. 

- Transparent documentation of modelling assumptions, calibration datasets, and 

processing methodologies. 

- Characterisation of bias and uncertainty, including documentation of how 

systematic errors are assessed and corrected. 

- Alignment with national emissions/removals reporting structures, including 

compatibility with Tier approaches and spatial alignment with land-use classifications. 

- Sustainability of operational use, in terms of institutional capacity, space-based 

data availability and mission continuity, and technical infrastructure. 

While space-based biomass estimation is not yet universally operational across all 

contexts, it holds promise. Countries are encouraged to take a cautious, scientifically 

grounded approach, leveraging space-based data where appropriate, while upholding 

the principles of good practice, transparency, and national relevance.  
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Appendix: Country case examples 

The following Appendix presents selected country case studies that illustrate how space-

based forest biomass-related datasets have been applied to enhance aboveground 

biomass (AGB) estimation and reporting. These examples reflect a range of contexts, 

from peer-reviewed scientific studies to official national reports, and demonstrate 

different ways countries have integrated remote sensing products with National Forest 

Inventory (NFI) data. Each case is linked to a specific Scenario from Chapter 5, or an 

application discussed in Chapter 3. While these cases provide practical insights, this 

compilation is not exhaustive, acknowledging that additional country efforts are ongoing 

or in development. 

 

Figure A.1. Summary of key operational and research examples for the use of space-based forest 

biomass-related data as auxiliary information for reporting purposes. 

1. Peru, Guyana, Mozambique and Tanzania: Increasing the precision of 

subnational AGBD estimates through model-assisted estimation (Scenario 1, 

Chapter 5) 

Context: Many countries within the tropics struggle to complete or update their NFIs, 

thereby limiting the quality of their (sub)national forest-related AGBD estimates and 

corresponding emission factors. In a cross-country study, the complexities around the 

integration of a global biomass map with NFI data under model-assisted estimation 

across four tropical country-cases (Peru, Guyana, Mozambique, and Tanzania) were 

investigated. These countries represent a range of NFI sampling designs and biomass 

densities. The study focused on how best to associate frequent NFI cluster plot 

configurations (here defined as two or more plots arranged in some kind of fixed spatial 

configuration) with space-based biomass map units. The study aimed to demonstrate the 

practical application of model-assisted approaches when using biomass maps in addition 

to NFI information and their potential to enhance the precision of AGBD estimates. 
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Figure A.2: NFI reference data and the biomass map, to the extent of the population as defined for Peru, 

Guyana, Tanzania and Mozambique, in that order. The bottom row details examples of these countries' 

plot configurations along with the defined polygons encompassing the clusters (in purple). Adapted from 

Málaga et al, 2024[30] 

Methodological Approach: To evaluate the contribution of biomass maps to reduce 

uncertainty of (sub)national AGBD estimates, model-assisted regression estimators 

accommodating each country’s NFI sampling design were implemented and compared to 

a baseline approach using only NFI field data. For the purpose of model-assisted 

estimation, linear regression models were developed per country and stratum to locally 

calibrate the biomass map. Given the widespread use of clustered plots in NFIs, a two-

stage model-assisted estimation framework[49], [50] was followed, considering two 

different strategies. In Peru and Mozambique, where plot distances were shorter than a 

CCI map unit (~100 m), regression models were fitted at the aggregated level, using mean 

AGBD values per cluster as the dependent variable and mean map values within polygons 

encompassing those same clusters as the independent variables. In contrast, for Guyana 

and Tanzania, where plot distances exceeded the biomass map unit size, models were 

fitted at the individual level, relating AGBD plot values to spatially corresponding biomass 

map unit values. Additionally, harmonization procedures were implemented to ensure 

consistency across field-based and model-assisted estimates, for instance, by 

accommodating the map to each country's stratification layer and forest definition (when 

necessary). The study shows that upon calibration, introducing openly available biomass 

products into (sub)national AGBD estimates resulted in a fair gain of precision of 10%  to 

50% at country-level, aligning with 2006 IPCC Guidelines of reducing uncertainties as far 

as practicable[20]. 

Further resources: Methodological details can be found in Málaga et al, 2024[30]. 
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2. Sudan: Using the Geostatistical Model-based Estimator to fill gaps in NFI 

(Scenario 4, Chapter 5) 

Context: Sudan's NFI offers estimates for vegetation and forest assessments, such as 

volume and AGB density (AGBD). The NFI uses a systematic grid sampling design, with its 

density adjusted based on ecological strata throughout the country. However, large 

spatial gaps exist due to the inaccessibility of certain regions, leading to entire sections of 

unvisited inventory plots. These gaps violate the intended sampling design of the NFI, 

complicating assessments at the stratum, state, or national level. 

 

Figure A.3: Schematic representation of the integration of EO-derived auxiliary datasets with an 

incomplete probability sample of ground reference data that is missing entire areas. Reproduced from 

Sudan FRL (in review). 

Methodological Approach: To overcome this challenge, EO-derived datasets were used 

to provide auxiliary data to augment the NFI. Geostatistical model-based inference was 

chosen (Scenario 4, Figure 5.1), wherein a linear relation between (a) forest volume and 

biomass estimated at the NFI plots, and (b) auxiliary EO datasets, was developed. The 

auxiliary EO datasets, individually, were selected based on their moderately strong 

relationship with the NFI-estimated biomass (where available). The developed linear 

geostatistical model accounts for the underlying spatial autocorrelation observed in NFI-

estimated biomass across the domain of interest. Fundamentally, the assumption behind 
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the inference technique is that observations of a spatially continuous phenomenon (i.e. 

AGBD at the reference plot locations) in close proximity will tend to exhibit similar values. 

Hence, geostatistical techniques are employed, relating biomass estimated at reference 

plots with auxiliary EO datasets in a model while accounting for the underlying spatial 

autocorrelation in biomass across the area of interest. The three important 

considerations for the technique are (1) the auxiliary EO datasets used capture spatial 

variations across the domain of the country, (2) the visited ground reference plots cover 

the range of vegetation types, and their biomass, found over the area of interest, and (3) 

any auxiliary EO datasets are acquired or created independent of the ground reference 

data. The results of this approach allow “gap-filling”, i.e., the prediction of biomass/carbon 

in locations of unvisited NFI plots, and in undersampled areas. This provides a spatially-

dense and spatially-complete set of predictions for the nation, thereby allowing state-

level and national-level estimates to be generated.  

Further Resources: Details of the model fitting procedure and source code can be 

accessed at Sudan FRL (currently under review). 

3. Mexico: Using the Geostatistical Model-based Estimator to fill gaps in NFI and 

biomass predictions over specific project sites (Scenario 4, Chapter 5) 

Context: Mexico has an advanced forest inventorying system in place, with a nationwide 

systematic gridded network of permanent plots as a part of the Inventario Nacional 

Forestal y de Suelos (INFyS). Grid sizes vary across forest strata, but are continuous over 

vegetated and non-vegetated areas. 

Due to various financial and logistical constraints, the third NFI cycle remains incomplete, 

leading to spatially irregular, non-random gaps in the probability design across the 

country. Besides gap-filling locations of unvisited NFI plots with vegetation biomass 

predictions, the country was also interested in predicting biomass over arbitrary regions, 

such as nationally demarcated protected areas, terrestrial ecological strata, and 

community forest management projects and payment for environmental services. 

Methodological Approach: Similar to the case of Sudan, a geostatistical model-based 

approach (Scenario 4, Figure 5.1) was developed for Mexico using auxiliary datasets of 

forest height and biomass estimates derived from EO. The model is a linear regression 

that uses spatially varying regression coefficients to account for the spatial 

autocorrelation in the model residuals and model parameter nonstationarity. Therefore, 

for any desired prediction location, values of the regression coefficients can be inferred 

while accounting for spatial effects. The results enable the prediction of biomass in any 

area of interest - single-location or area-wide spatial scales - with traceable uncertainty 

analyses. They, hence, fill a gap between national, design-based NFI efforts and the need 

for more regional-level to project-level assessments of biomass.  

Further Resources: Details of the model fitting procedure and source code can be 

accessed at Hunka et al, 2025[44]. 
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Figure A.4: Schematic representation of the integration of EO-derived auxiliary datasets with an 

incomplete probability sample of ground reference data that is missing entire areas. Reproduced from 

Hunka et al, 2025[44] 
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4. Paraguay: direct estimation of biomass density (Scenario 4, Chapter 5) 

Context: Paraguay’s forests, particularly within the Chaco region, are globally significant 

yet are threatened by high deforestation rates, making the accurate estimation of its 

forest biomass critical for national climate reporting and mitigation efforts. To estimate 

AGBD for their GHG reporting, Paraguay has undergone one round of their National 

Forest Inventory (NFI), and are now challenged with updating their NFI as well as 

improving their coverage. A research study explored whether and how EO-based 

information could improve the coverage of biomass data and thus the country’s stratum-

level biomass estimates. Current available information from spaceborne-lidar might not 

accurately represent structural characteristics of Paraguay’s dry forests, therefore off-

the-shelf spaceborne-lidar estimates are not ideal for estimating biomass in Paraguay’s 

territory. Hence, the study developed a country-specific biomass map by combining 

Paraguay’s NFI data with GEDI spaceborne-lidar information, and then applied model-

based inference to produce stratum-wise biomass estimates with improved precision. 

Once the biomass map was created, the use of map-unit variances and covariances under 

model-based estimation was explored. Model based inference can be pursued when, for 

example, map units are very large and spatial co-registration with small reference sample 

plots can introduce large additional uncertainty in the relation between AGBD on the plot 

and the map unit AGBD. 

 

Figure A.5: (A) NFI plots either used for the model development or excluded from the analysis, as well as 

the forest strata within the country, and Paraguay River presented as a blue dashed line. (B) Predicted 

AGBD values using the prediction model. Reproduced from Bullock et al, 2023[51] 

Methodological approach: A country-specific biomass mapping model (at 6 km by 6 km) 

was developed for Paraguay by matching NFI plots with high-quality spaceborne-lidar 

shots (GEDI) within 200 m of each other, to ensure consistency in elevation, forest types 

and conditions, including disturbance (Action 1, Chapter 5). The study used GEDI’s hybrid 

statistical framework (Dubayah et al, 2022[52]) to estimate mean AGBD at the 6 km tiles, 

along with the associated variances and pairwise covariances for those tiles. Finally,  
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stratum- and national-level biomass means and corresponding standard errors were 

estimated using a model-based approach. Standard errors for model-based stratum-level 

estimates were, on average, 47% smaller than those estimated with the NFI data alone, 

reflecting a substantial gain in precision.  

Further Resources: Details of the study can be accessed at Bullock et al, 2023[51]. 

5. Zambia: post-stratification for emission factors (Scenario 2, Chapter 5) 

Context: Zambia's Forest Reference Emission Level (FREL)[53] emphasizes the need for 

reporting forest carbon stock estimates representative of their diverse forests. Zambia's 

forests, including miombo woodlands and wetlands, exhibit significant variability in 

carbon stocks across ecological zones, which are represented in the ILUA II National 

Forest Inventory. To improve the estimation of their deforestation based-emissions, 

Zambia post-stratified the country into five strata using a spatially explicit carbon map 

estimated from a combination of their NFI data and remotely sensed information.   

 

Fig. A.6: Zambia’s AGC map, based on the CART approach using Landsat and SAR for post-stratification 

of estimates. Inset: Location of ILUA II and ILUA I field cluster plots (yellow and red circles, respectively). 

Adapted from Zambia’s FREL Report[53] 

Methodology: To address this, the country combined Zambia’s ILUA II National Forest 

Inventory data with optical and Synthetic Aperture Radar (SAR) remotely sensed data to 

estimate an aboveground carbon (AGC) map. The methodology integrated field data, 

remote sensing, and classification and regression trees (CART) to come up with carbon 

predictions beyond NFI sampling locations. Plot-level carbon stocks were estimated from 

field data, collected through systematic sampling. Optical (e.g., Landsat) and SAR (e.g., 

ALOS PALSAR) data were used to map forest cover and structure. CART models were 

applied to predict AGBD by linking field data with remote sensing variables like spectral 
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indices and backscatter values. A wall-to-wall map of CART-predicted AGBD was then 

created, which was used for post-stratifying forest areas into five homogeneous classes 

based on per ha carbon stock values. Per-stratum emission factors were then estimated 

from the plot-level AGBD information within each stratum, improving accuracy by 

addressing spatial variability and reducing uncertainties. 

Further resources: Further details can be found in Zambia’s FREL Report[53]. 

6. Nepal: Independent comparison for the estimation of emission factors for Terai 

Arc Landscape (Application: comparison for verification, Chapter 3) 

Context: Nepal’s Emission Reduction Program (ERPD) is a key component of its National 

REDD+ Strategy. Aligned with multiple national policies, the ERPD targets the Terai Arc 

Landscape (TAL), a region of rich biodiversity and productive forests but facing 

deforestation and forest degradation pressures. In order to improve their mapping of 

forest-related activity data to include forest degradation, they currently make use of the 

Morphological Spatial Pattern Analysis Tool (MSPA), which classifies each pixel based on 

the surrounding landscape. This results in forest pixels being divided into Intact and Edge 

pixels, which are expected to store different amounts of biomass. The Programme 

wanted to have separate biomass estimates for both Intact and Edge classes (as defined 

by MSPA tool) using National Forest Inventory as input data. However, before adopting a 

post-stratification approach using the corresponding NFI data within TAL and the MSPA 

classification, additional verifications were needed to confirm different biomass 

estimates in their strata of interest (Intact and Edge). 

 

Figure A.7 Comparison of forest biomass estimates in the Terai Arc Landscape (TAL) for No Forest, 

Intact and Edge strata, using National Forest Inventory plots (left) and lidar-derived estimates (right). 

Adapted from Nepal ERPD[54] 

Methodology: To estimate forest biomass for Intact and Edge strata within TAL, total 

biomass stocks were recalculated into Intact and Edge classes, following Birigazzi et 

al[55]. Greater biomass values were observed in the Intact strata in comparison to the 

Edge strata (Figure A.7, left). However, to assess the likelihood of systematic errors in the 

estimates due to the adaptation of the NFI design into the ERPD area of interest, a 

comparison was made with lidar estimates. Lidar-based estimates were derived from an 
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airborne laser scanning (ALS) campaign covering 5% of the Terai Arc Landscape, with 

systematically sampled blocks and calibration plots used to model above-ground 

biomass (AGB)[56]. Lidar-based estimates showed a similar pattern as the NFI-based 

estimates of greater carbon in the Intact strata than those in the Edge strata (Figure A.7, 

right). This gave increased confidence in the use of NFI data for the EPRD forest strata.  

Further Resources: Further details can be found in Birigazzi et al[55], Kauranne et al[56], 

and Nepal’s ERPD report[54]. 
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