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Chapter 1. Introduction

In recent years, a series of space-based missions targeted at improving forest biomass
estimates have been launched, providing global forest biomass density maps[1]. Space-
based forest biomass-related data have been produced through dedicated projects, such
as ESA’'s CCl BIOMASS, and missions such as NASA's GEDI, and JAXA's ALOS satellite
series[2]. New satellite missions in operation from 2024 and 2025 include the ESA
BIOMASS, JAXA ALOS-4, and the NASA/ISRO SAR (NISAR) missions, which have dedicated
forest and biomass mission goals. Biomass estimates derived from data from these
missions offer new possibilities for enhancing national forest monitoring systems and
improving the accuracy and completeness of National Greenhouse Gas Inventory
(NGHGIs) and Reducing Emissions from Deforestation and Forest Degradation (REDD+)
reporting. There is growing interest in the use of this data to improve NGHGlIs including
REDD+ reporting[3], [4] and other related monitoring and reporting priorities.

Despite the potential of space-based forest biomass-related datasets, their adoption
within national systems remains limited. Key barriers include technical challenges in
integrating space-based data with ground-based data, concerns about uncertainty and
validation, and a lack of clear guidance on operational use. Many countries are unsure
how to assess the readiness of space-based biomass products or apply them in a way
that meets good practice for reporting estimates from space. The publication of the 20719
Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[5], hereafter
referred to as the 2079 Refinement, focused on general warnings to avoid potential
misuse, however guidance on operational application has been limited to date. This rapid
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response module aims to support informed decision-making related to operational uses
of space-based forest biomass-related datasets and products within multipurpose
National Forest Monitoring Systems.

Chapter 2. Biomass maps created with Earth Observation

Biomass maps created with space-based data can provide a representation of forest
aboveground biomass density (AGBD), that is forest AGB stock per unit area for a point
in time. While no space-based technology directly measures forest AGB stocks or stock-
changes, satellite sensors are sensitive to various biophysical properties of vegetation
(Figure 2.1). Such biophysical properties (tree heights, greenness, water content,
vegetation structure and density) are often closely related to the biomass content of
vegetation, thereby allowing its indirect estimation with space-based data.

(a) Earth Observation images (b) Sensors

Radar backscatter

Optical sensors
(c.g. Landsat)

O

Radar sensors
(e.g. ALOS PALSAR)

Lidar sensors
(c.2. Optech ALTM 3100)

(c) Microwave view

. of forests
3D Lidar
surface C-band wavelength L-band wavelength P-band wavelength
; (5.6 cm) 3 (23.5 cm) (69.0 cm)
image i -

Optical
image

Figure 2.1: lllustration of (a) Earth Observation images
over forest and non-forest areas, (b) three common
types of spaceborne and airborne Earth Observation
sensors, and (c) radar wavelengths commonly used
for forest monitoring[6]. Adapted from Joshi et al[7]
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The type of biophysical properties of vegetation sensed by space-based technologies is
dependent on the wavelengths of electromagnetic energy used and/or detected by the
satellite. Typically, optical sensors are sensitive to the spectral characteristics of the
vegetation, while radar and lidar sensors collect data related to vegetation structural
parameters. The different sensor types are thus complementary and are therefore 1".'091
commonly used in combination. The fundamental principle underlying the creation of s\ :,;2‘,::‘
AGBD maps from any sensor, or combination of sensors, is the calibration of the space- '-" \ \‘;'-
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based measurements with forest-type-specific ground inventory data. Most commonly,
the carbon pool estimated through Earth Observation (EO) is AGBD.

Accurate ground inventories are necessary for the calibration and validation of any
model, including those linking space-based data to forest AGBD. Space-based datasets
serve simply as auxiliary data to the ground inventories for estimation of forest biomass.
Therefore, the validity of models relating space-based and ground data are important to
achieve accurate estimates for use in National GHG Inventories. The Committee of Earth
Observations Satellite (CEOS) Aboveground Woody Biomass Product Validation[8]
provides a synthesis of scientific consensus on good practices in biomass mapping and
validation.
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Figure 2.2: Integration in-situ/EO for generation of modelled biomass and biomass maps. Input data,
model-related processes and products are depicted in blue, orange, and green boxes, respectively
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Figure 2.2 outlines a generic process that results in space-based forest biomass-related
data being appropriate for application in National GHG inventories. In the figure, optical
(e.g., Landsat, Sentinel-2), radar (e.g., ALOS PALSAR, Sentinel-1), and/or lidar (e.g., GEDI,
ICESat-2) are combined with ground reference data (field plots) to calibrate models that
are used to predict biomass. Model diagnostics are assessed with commonly used error
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metrics. Thereafter, predictions of biomass are made on a regular grid, represented
visually as a biomass map.

Challenges and limitations in creating AGBD maps exist for both space-based sensors and
ground-based data. For example, optical sensors are affected by the complexity of forest
crown layers and rely on cloud-free weather conditions. Radar signals transmitted at long
wavelengths (L-band, P-band) are unaffected by cloud particles, but ground-topographic
distortions can constitute possible limitations. Furthermore, both optical and radar
sensors are susceptible to signal saturation at high AGBD levels. Similarly, lidar-predicted
height used to develop AGBD estimates of one forest type may not be representative of
vegetation with different structure and wood density. The availability of suitable and high-
quality ground-based data, or lack thereof, to calibrate models from space-based data
can substantially affect both the estimates of forest AGBD and their associated
uncertainty. Therefore, the validation of biomass maps is needed before their direct use
in forest biomass estimation. Furthermore, global- or large-coverage biomass maps may
be re-calibrated, and re-validated with independently collected local datasets, for a more
complete and accurate representation of AGBD across the domain of interest.
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Box 2.1: Open source global-scale biomass datasets
Estimating forest AGBD for use in climate change mitigation efforts, including NGHGI, is a priority for
several new and upcoming space agency missions, including the GEDI[9], NISAR[10], BIOMASS[11], ALOS-
4[12] and MOLI[13]. One of the primary goals of the missions is the uptake of their products for forest
monitoring toward climate mitigation. Space agencies (such as NASA and ESA) have released a series of
global or near-global coverage biomass datasets, with prediction techniques calibrated either directly with
ground-plot data, airborne lidar datasets, and/or with AGBD compiled from various National Forest
Inventory (NFI) reports (see Table 2.1; Hunka et al[14] describes the background approaches used in the
generation of the datasets). This rapid response module provides a few country-case examples (see
Appendix) where existing NFIs have been augmented with the use of these global space-based biomass
datasets as auxiliary data sources.
Table 2.1: Summary of two of open-source global-scale biomass datasets and their attributes
Sensor Spatial . Geograhic Temporal Uncertainty Reference Access
resolution coverage Coverage
Standard Available
error of the through
predicted Creative
25-m footprints aboveground Commons
that are 60 m biomass at Attribution 4.0
apart along- April 2019 - | each 25-m International
NASA  Global track and 600 m March 2023 | footprint. (CC-BY-4.0)
Ecosystem . apart across | Between
Dynamics :_éDEgT) tracks. 52° N and | and The Tkm ZI[J]b;yah et
Investigation 52°S gridded
(GEDI) A gridded 1-km April 2024 - | product has
map  product to date an uncertainty
from GEDI s layer
also available. associated
with it (based
on hybrid
inference)
SAR
(ALOS-1/-
. 2, Standard .
Ei’:m ec"mate Sentinel- 2007,2010, | deviations contore et ';;’i{'sab'e o :nt
1ange 1, ASAR) | 100m Global 2015-2022 | (SDs) available P
Initiative (CCl) al[16] Data
Biomass and as separate Portal[17]
LiDAR map products.
(GEDI,
ICESat)
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Chapter 3. Application of space-based forest biomass-related estimates

Considerations for the use of space-based forest biomass-related data in National GHG
Inventories were first introduced in Chapter 2, Volume 4 of the 2019 Refinement[5]. The
2019 Refinement was then complemented by the GFOI Methods and Guidance (MGD) v
3.0[18], which elaborates on the use of these datasets in Section 4.3.1.2. Both the 2019
Refinement and the MGD v 3.0 suggest possible applications and general considerations
to improve the estimation of carbon emissions at higher Tier levels using space-based
forest biomass-related estimates.

Initially, exploratory uses considered pixel-level biomass values to estimate overall forest
biomass in areas of interest, with emissions thereafter estimated when combined with
activity data. However, to reduce uncertainties, for the most part, current applications
aim to produce stratum-specific mean estimates and associated uncertainties of
aboveground carbon stock, and in some cases emissions factors for land-use, land cover
transitions including activities under REDD+.

Here, we expand on the possible applications (Table 3.1), including the associated
opportunities, challenges, and current level of maturity, as defined by the GFOI CALM
criteria[19]. Guidance provided in this Module focuses only on applications that are
considered Pre-Operational to Operational applying the CALM Criteria.

Table 3.1: Opportunities, Challenges and Levels of Maturity of applications of space-based forest
biomass-related estimates in NGHGIs

Application Opportunities Challenges Corresponding
GFOI CALM
Phase

Enhancing NFI - EO-based biomass information (e.g., - Using biomass maps for Operational
sampling designs biomass maps) can support the constructing NFI sampling
through defining design of new National Forest designs should take into
strata, or defining Inventories (NFIs) or enhance existing consideration
strata for NFI sampling schemes. Furthermore, objectives/variables beyond
reporting stratified estimation for reporting biomass estimation.
purposes purposes using sub-populations - Post-stratification for reporting

defined through space-based purposes requires an expertise

estimates can increase the precision to define sub-populations that

of sample-based estimates. adequately represent local

- For a country-case example, see biomass variations.
Appendix 1, Example 5 (Zambia) - Using forest biomass-related

data for stratification presents
challenges if/when forest
conditions change over time.
This reflects a trade-off between
achieving high short-term
precision and ensuring long-
term robustness and flexibility in
survey design.
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Application

As auxiliary data
for increasing the
precision of
aboveground
carbon stock
estimates in
Forest Land
derived primarily
from ground
data

Opportunities

Countries facing challenges in the
implementation of their NFls can
consider the use of EO-based datasets
as an auxiliary source of information
to report at greater levels of precision
than with exclusively NFl data. This is
in line with IPCC good practice
guidelines for NGHGlIs, where it is
good practice to reduce uncertainties
as far as practicable (IPCC [20],
Section 1.2).

Implementation challenges that can
be addressed include but are not
limited to: incomplete NFls,
inaccessible areas (i.e., gaps), limited
funding for implementation.
Improved forest carbon stock
estimates provide more precise pre-
deforestation values for calculating
emission factors.

For country-case examples, see
Appendix 1, Examples 1 (Peru,
Guyana, Mozambique and
Tanzania), 2 (Sudan), and 3 (Mexico)

Challenges

Consistency is required between
the activity data and biomass
maps including definitions,
geolocation, and spatial and
temporal data characteristics.
Furthermore, the integration
method should be fully
supported by the initial
conditions of the ground data, as
specified in Chapter 5.

Corresponding
GFOI CALM
Phase

Pre-
operational/
Operational

Basis for directly
estimating
carbon stock
values in Forest
Land

EO-based biomass estimates could
provide an initial assessment of
carbon stock levels in forest land for
reporting purposes.

Aggregating estimates at the regional
level can help reduce the impact of
pixel-level uncertainties in EO-based
biomass products. Mean estimates
from pixel values result in more stable
and reliable biomass estimates at
larger scales are produced.

Estimates derived from EO-based
biomass information can provide pre-
deforestation values for calculating
emission factors.

For a country-case example, see
Appendix 1, Example 4 (Paraguay)

Ensuring compliance with good
practice (see Chapter 4) can be
challenging, which may hamper
verification processes.

Enough reliable ground data will
be necessary for validation.
Additionally, ground data used
for calibration and validations of
EO-based estimates must
accurately represent the area for
which direct estimation is
conducted.

Post-deforestation carbon stock
values cannot be inferred
directly from EO-based forest
biomass datasets.

Pre-
operational/
Operational

For comparison-
verification
purposes

Earth Observation (EO)-based
biomass estimates can serve as an
independent and complementary
data source to support a wide range
of stakeholders in assessing reported
forest biomass estimates. For
example, Validation and Verification
Bodies (VVBs) can use EO-based
estimates to independently evaluate
and verify the accuracy of biomass
data reported in forest projects.

EO-based estimates used for
comparison or verification need
to be validated with high-quality
reference data representative of
the reported area. Note that the
reference data used in the
calibration and validation of
these estimates should not
consist of the same reference
data used in reporting.

The quality of EO-based
estimates needs to be

Operational
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Opportunities

Challenges

Corresponding

GFOI CALM

For a country-case example, see
Appendix 1, Example 6 (Nepal)

comparable to the quality of
reference data used for
reporting. Good practice
considerations in selecting EO-
based datasets or products are

elaborated in Chapter 4.

Phase

Basis for directly
estimating
biomass change
through multi-
temporal EO-
based biomass
estimates

Directly estimating biomass change
would allow the monitoring of carbon
stock changes from land cover change
as well as Forest land remaining
Forest land, considering processes
such as degradation, regrowth,
planting and harvest, as well as
natural disturbances.

Requires an established time
series of EO-based estimates.
Though research advances in
this field are promising, the use
of multi-temporal EO-based
biomass estimates is not
recommended for reporting
purposes due to requirements of
consistent and well-validated
biomass maps to accurately
estimate biomass changes and
their associated uncertainties, as
well as of verification of
estimated biomass stock
changes

Systematic errors from multi-
temporal biomass estimates
propagate and can cause
significant errors if uncorrected.
Limited availability of ground
reference data on biomass
changes hamper the verification
of this approach at national and
subnational scales.

Research

Integrating EO-
based biomass
estimates with
time series of
land use change

and/or with Tier 3

models.

In combination with EO-based land
cover time series, using space-for-
time substitution, where spatial
differences between forests of
different ages or conditions are used
as a proxy for temporal change, EO-
based biomass estimates could be
used to estimate different spatial
variations of forest carbon stocks.
This use has potential for improved
representations of complex forest-
related carbon fluxes.

This requires consistency
between the various data
sources including forest
definitions and spatial and
temporal data characteristics, as
well as an established time
series of EO-based land cover
change, or knowledge of the
forest age/management status
at a scale consistent with the EO-
based biomass estimates.
Systematic errors from multi-
temporal biomass estimates
propagate and can cause
significant errors if uncorrected.
Limited availability of reference
biomass stock changes ground
estimates impede this approach
from being verified over large
areas and thus used for
reporting purposes.

Research
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Box 3.1. Non-MRV uses for EO-based biomass estimation

EO-based biomass estimation has proliferated as a tool to support management of natural resources not

directly associated with climate change mitigation. While the purpose of this guidance is limited to the uses

of these datasets for NGHGlIs, here we highlight a few non-MRV uses:

- InPeru, requests for forest removal follow guidelines[21] which consist of a regulatory framework to be
assessed by forest and wildlife authorities. The objective of these guidelines is to ensure that the
environmental impact of forest cover removal is minimized. To achieve this, a standardized methodology
has been established for calculating the payment required for authorized deforestation. The calculation
incorporates economic and biophysical variables to create a bioeconomic model that determines the
payment amount for deforestation authorization. This model incorporates the quantification of forest
carbon stocks, which is calculated using a national carbon stock map.

- InBolivia, timely information on forest fire prevention and management is a crucial resource for society.
SATRIFO[22], the country's wildfire monitoring and early warning system, provides data for fire
prevention and control. Among its resources is an interactive tool that allows users to explore forest
burn areas and fire risk zones, which can be overlaid with forest biomass estimates developed
specifically for Bolivia[23]. By integrating these data sources into a visualization platform, SATRIFO
enables broad public access to information on forest fire prevalence and the associated biomass content
in affected areas.

- The Congo Basin is the largest forest ecosystem tract in Africa, storing a vast amount of biodiversity,
while at the same time being inhabited by over 30 million inhabitants. Quantifying the ecological
condition of forests is thus important for its sustainable management. Shapiro et al[24] mapped Forest
Condition (FC), a metric aimed to quantify the degree of forest degradation, by integrating mainly EO-
derived datasets ecological, physical and forest characteristics in the region, including a national forest
biomass dataset derived from airborne lidar and satellite imagery for the Democratic Republic of the
Congo[25]. This exercise provided a methodological approach for assessing the condition of forests,
which can be used for assessing ecosystem risk under the IUCN Red List of Ecosystems framework.

Chapter 4. Good practice considerations
Adopting Tier 2 Methods

The adoption of aboveground carbon stock values (for the stock difference method) can
be at a Tiered level as defined in the IPCC Guidelines. The 2006 IPCC Guidelines[26]
Volume 1, Section 2.2.4 highlights what constitutes a Tier 1 and Tier 2 estimation.
Specifically, Tier 1 is the application of the default methods and supporting carbon-stock-
change values / emissions factors in the Guidelines. Tier 2 is defined as the use, together
with the default or an enhanced method, of carbon stock change values or emission
factors that better reflect national circumstances, derived from (a) literature values, (b)
the IPCC Emission Factor Database values, or (c) nationally obtained measurement data.

Tier 2 methods involve consideration of country-relevant or specific data and greater
disaggregation to reflect national circumstances. As a result, Tier 2 methods are typically
more accurate when compared to Tier 1. Space-based data and modelling tools are
acceptable Tier 2 methods if they are calibrated and validated with nationally-relevant

ground data (2019 Refinement[5] Volume 4, Chapter 2). Jurisdictional programme =

9
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requirements for REDD+ can take on a more defined approach when it comes to what
constitutes Tier 2 values, with higher requirements for demonstration of National
relevance and a focus on data obtained from measurements[27], [28].

Developing or Selecting Models

The generation of AGBD estimates from space-based datasets rely on models. The use of
a model does not replace the need to collect ground data for calibration or validation (see
2019 Refinement[5] Volume 4, Chapter 2). The 2079 Refinement also notes the difficulties
of aligning space-based biomass products with national definitions and that these
datasets can display significant systematic errors in estimation of carbon stock. When
developing or selecting any model for inclusion in NGHGI reporting, the 2079 Refinement
notes the following is good practice:

- adequate representation of the range of land uses, ecosystems and
management practices in the region or country for which the model will be used
In opting to use AGBD values derived from space-based data the following
considerations should be made:

o data availability through time and space, resolution, and limitations of the
method/product (e.g., saturation issues in dense forests).

o consistency with the National Forest definition.

o consistency with activity data characteristics such as land use classes,
ecozones, among others, to enable integration and the generation of
consistent, emissions/removals estimates; specifically, the 2019 Refinement
notes: it is “good practice to demonstrate how the (biomass density) maps are
consistent with national land-use classification system, in particular how they are
integrated with the land-use data chosen by the country”.

o representative of the range of AGBD values within the area of interest. In line with
IPCC Guidelines, seeking local expert judgement is desirable, in this case on AGBD
values of the region’s biomes and vegetation types.

Validation of any data, including space-based forest biomass-related data, at the
relevant scale is strongly recommended before their direct use in forest biomass
estimation. Such validation can contribute to the assessment of whether such data
meet user needs before relying on these for estimation.

Furthermore, these data may be re-calibrated with local datasets to develop Tier 2
estimates that more accurately predict forest biomass in the domain of interest. It is
good practice to ensure that models are calibrated and modelled predictions are
assessed for accuracy against ground measurements aimed at reducing
uncertainties as far as practicable.

- allow for the estimation of uncertainty
The uncertainty of the estimates inferred from the model predictions, as well as the
inherent uncertainties of the model itself, should be characterized and reported

10
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transparently. This includes how the estimates are produced. The following
information is to be provided by the model producer:
o documentation describing ground data used in the model calibration and
validation, including means of any quality assessment
o description of how bias was/can be assessed and removed
o any systematic prediction errors within areas of interest identified using
available ground data (systematic over- or under estimation) (Box 4.1)
o documented assumptions (inclusions and exclusions) and
explanations/justifications for them
o description of how the model could be used to improve estimates from ground
data.

Box 4.1: Comparing (sub)national NFl-based estimates to a global biomass map

In Peru, Malaga et al[29] compared AGBD estimates from the 2017 European Space Agency Climate
Change Initiative (CCl) biomass map (v3) to the country’s ground data across four strata in the Peruvian
Amazon: hydromorphic zone (HZ), accessible montane forest (AMF), inaccessible montane forest (IMF),
and lowland forest (LF). The study assessed the extent to which the global map, used as auxiliary
information, could enhance the precision of (sub)national forest AGBD estimates. When comparing
stratum-wise AGBD estimates from the uncalibrated version of the map (i.e. more specifically, the synthetic
estimator) with NFl-based direct estimates, results showed systematic overestimation by the global map.
While NFl-based means ranged from 218-254 Mg ha™, map estimates ranged from 243-385 Mg ha™'. As
shown in the figure below, stratum-wise v3 map AGBD estimates were always greater than NFl-based
AGBD mean estimates and their corresponding confidence intervals.

The CCl biomass map showed improvements in version (V4), which were observed in a later study[30].
Across all four strata, no systematic error was observed between the 2017 CCl v4 map estimates and NFI-
based AGBD estimates. Such examples highlight the importance of comparing and calibrating biomass
map predictions with ground-based estimates, while also helping map producers identify product
limitations and improve the accuracy of their products.

400 A
- A A A
%, 3001
£ A [ ]
=200 i } s 4 CClv3
= i + CClv4
o # NFl-based
G 1001

0_

HZ AMF IMF LF Amazon
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- can be maintained in an operational context with available time and resources
(e.g., input data is readily available, staff have sufficient experience and
knowledge, suitable compute infrastructure is available)

Developing biomass models can be data processing and resource/skills heavy,
especially for annual reporting cycles required for National GHG Inventories. If using
EO based biomass density estimates for various forest types (e.g., open and closed
forest), it may be that generating new models is not something that needs to be
repeated in each inventory cycle, while instead repeated periodically as for NFlIs.

11
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Other use cases may require deeper consideration if such processes are to be
repeated every GHG inventory cycle.

- produce outputs that can be used for reporting emissions and removals by
relevant land-use categories
When using data from biomass density maps in a NGHGI, it is important to ensure
spatial alignment between biomass datasets and national land-use classifications.
Reporting of biomass C stock change estimates from forest land, and forest land
conversions, requires gain and loss or stock change factors. Stock change factors (as
generated by NFI data) rely on carbon stock being measured at least two points in
time. Carrying out a comparable process using exclusively biomass density maps is
not considered operational (Table 3.1). However, where there is a land use change
from forest land to non-forest land, enhanced estimates from or with biomass maps
can inform the pre-deforestation carbon stock. This applied with Tier 1 stocks from
the post land use can generate the emissions factor required which is aligned with
the gain and loss method; noting that the direct generation of removals factors from
exclusively EO based biomass data are not yet considered operational.

- are well documented and tested
Documentation leads to ownership, control, consideration of trustworthy data and
transparency which is core to consistency and continuity in National GHG Inventories.
It is also fundamental to third party review.
Depending on the application, the 2079 Refinement highlights that additional
metadata from models and parameters used to generate biomass maps may be
required to characterise and fully report how bias and precision are addressed.
The following should be considered to achieve the principles of transparency:
o document the qualities of the model to demonstrate that it is fit for purpose.
o document the calibration procedure and results.
o provide clear metadata on data sources, methodologies, and assumptions
(exclusions and inclusion).
o document bias correction procedures and assessment of uncertainty.

12
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Chapter 5. How to meet good practice for operational use cases

Ensuring compliance with good practice implies obtaining an accurate estimate of forest
biomass/carbon while minimizing uncertainties as far as practical. The manner in which
space-based biomass maps can be used for obtaining biomass estimates is dictated by
the availability (or lack thereof) and quality of reference data, and the sampling designs
by which these data were collected. Ground reference data from NFls, for example, may
be augmented with biomass maps as auxiliary data sources, but the approach taken to
the statistical inference will vary based on the completeness and representativeness of
the reference data and the sampling design used to acquire it.

This chapter presents a decision tree (Figure 5.1) to guide countries in ways of enhancing
biomass/carbon estimates based on the availability and quality of their reference data
(e.g., from an NFI, and referred to as ‘observations’ in the following text), reflected in
different scenarios. The following paragraphs first describe the inferential
methodological scenarios. They are then followed by descriptions of the actions and
decisions (Figure 5.1) needed to be made before using a recommended inferential
technique. In support of the decision tree, Figure 5.2 illustrates a geographical
distribution of observations and ways in which the sample units may be missing.
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Action 1:

Select or construct
a biomass map

Decision 3
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Impute or predict to with missing
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Post-stratified
estimation
Less risk of bias Applies to the decisions Increased risk of

Figure 5.1: Decision tree showing the process of selection of a method to enhance estimates of forest biomass across an Area of interest
(AOI). The “risk of bias” arrow bar applies to the “Decisions” (e.g., Decision 3 carries less risk of bias in comparison to Decision 8).
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Box 5.1 - Scenarios: Methodological approaches for enhancing biomass estimates
with the use of space-based biomass maps

Scenario 1: With this scenario, the primary purpose is to use the biomass map as
auxiliary data to increase the precision of the estimate of the population mean. The
model-assisted estimator uses the map unit values as the model-predictions and
the reference data as the observations. The post-stratified estimator uses the
biomass map as the source of auxiliary stratification data.

o A post-stratified estimator. A common approach is to divide the biomass

map values into a small number (3-6) of groups or strata. Each map unitis
assigned to the stratum corresponding to the map unit value, and each
sample unitis assigned to the stratum of the map unit containing the sample
unit center. Possible stratifications include constructing strata so that each
represents the same proportion of the sample or so that each represents an
equal division of the range of map values. Post-stratified estimators can
improve precision when the variability of the population within each stratum
is less than the total variability of the population. In the case of a stratified
random sample, post-stratification should take place within strata. Key
constraints are that each post-stratum (the final strata) should have at least
10 and preferably 20 sample units and that the sampling intensity within
each post-stratum is constant. Most often, the simple expansion
estimators are used for within-stratum estimation, but the model-assisted
estimators could also be used.

A model-assisted estimator of the population mean consists of the sum of
a prediction-based term (the synthetic estimator) and a residual-based
adjustment term (based on the differences between the reference data and
their location-corresponding map predictions). The model-assisted
difference estimator uses the map unit values directly as the model
predictions and the reference data as the observations. In addition,
uncertainty in the model-assisted and post-stratified estimates resulting
from uncertainty in the map could be reduced by calibrating the map, i.e.,
by constructing a model of the relationship between the reference data as
the dependent variable and the map values as the independent variable and
then applying the model to predict a new value for each map unit. Model
assisted estimators can improve precision when the variance of the
residuals (the difference between the reference data and predictions) is less
than the variance of the reference data.

References: Cochran, 1977[31, p. 198], pp. 134; Westfall et al, 2011[32];
Naesset et al, 2011[33]; McRoberts et al., 2022[34], Malaga et al., 2022[29].

Scenario 2 : Use a spatial layer as a source of auxiliary data to divide the population
into relevant sub-populations. Examples include use of a layer representing
administrative regions, a land cover layer, a forest type layer, or climatic or

15




( F@ I Global Forest
! Observations Initiative

topographic layers. As for Scenario 1, the model-assisted difference estimator could
be used within strata to further increase the precision of estimates and/or the map
could be calibrated before application of the post-stratified or model-assisted
estimators (see dashed line to Scenario 1).

Scenario 3: This scenario groups the sample units with incomplete observations
into a single or small number of strata. Estimates for the strata without missing
observations can be calculated using the simple-expansion or model-assisted
estimators, as described above. Estimates for strata with incomplete observations
must be calculated independently from the other strata. A general approach would
be to enter the decision tree at Start (see Figure 5.1), following the recommended
inference techniques just for the stratum with incomplete observations. If a model-
based approach is taken, only existing observations within the strata of interest
must be used to obtain estimates of the strata means and variances. Once
estimates for all strata are obtained, estimates are combined to produce the
population mean estimate through post-stratified estimators.

References: Cochran, 1977[31], p. 134; Westfall et al, 2011[32].

Scenario 4: In this scenario, model-based inference is recommended when either
the reference data are not available (Decision 8), or if available, the reference data
are not a probability sample (Decision 7). The population mean is estimated using
the standard model-based synthetic estimator, expressed as the mean over all map
unit predictions. To estimate the variance of the mean estimate, the user requires
map unit variances and pairwise map unit covariances throughout the population.
o When reference data are available (Decision 7): In the context where the
reference data may not constitute a probability sample, but the sample is
nevertheless fairly balanced across the whole area of interest, or adequately
represents the whole range of the distribution of AGBD expected, the
population mean and variance are estimated using model-based estimators.
Under the model-based approach, a model is fitted using the reference data

as the dependent variable and auxiliary variables (such as space-based
biomass maps) as the independent variables. The fitted model is then used

to predict biomass values for each map unit within the area of interest. Here,
rather than relying on the underlying probability-based sample of reference

data, the validity of inference is determined by the model's distributional
assumptions. Several studies have investigated parametric and non-
parametric approaches, used hierarchical, mixed-effects or geostatistical
models, conducted inference in frequentist or Bayesian domains, hybrid
inference, amongst others. For simpler models, such as linear regression,
explicit formulas may be available for the estimation of map unit variances

and pairwise map unit covariances. For more complex models where explicit
formulas are not available, simulation based approaches such as bootstrap

and Monte Carlo methods, amongst others, can be a viable option to
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estimate the (co)variances. Model-based inference is considered conditional
on the reference data - the risk of bias is lesser when reference data of
suitable quality and distribution are available.

o When reference data are not available or not being used (Decision 8): the
risk of bias increases. In such a case, (co)variances provided by the map
maker or estimated during the construction of the map at Action 1, could be
used for estimating the variance of the estimate of the mean.

References: Stahl et al, 2011[35]; Brus and de Gruijter, 1997[36]; Babcock,
2015[37]; Babcock, 2018[38]; McRoberts et al, 2018[39]; McRoberts et al, 2022[40];
Emick, 2023[41]; May, 2023[42]

Scenario 5: With this scenario, the use of biomass maps is not considered
appropriate because reference data cannot be used to assess the validity of the
map or used to calibrate it. Alternative methods should be investigated, such as the
2006 IPCC guidelines guidance on Tier 1 and Tier 2 methods[26].

Actions and Decisions, as detailed in Figure 5.1, required prior to implementing a
recommended inferential method.

Action 1: The user either selects an existing biomass map or constructs a new map based
on user-acquired reference and auxiliary data. In the latter case, map unit variances and
covariances are estimated directly when constructing the map. When relying on existing
maps, the decision of which space-based biomass map to select for the described
approaches must be made by the user. It is recommended that several existing maps be
tested by the user, before selecting one that best meets the user's requirements (e.g.
selecting the map that most increases precision of estimates, the accuracy of model-
based predictions, etc.).

Decision 0: Do you have and want to use a reference sample for the area of
interest?

A reference sample is usually a set of observations with negligible uncertainty
used for training prediction techniques, uncertainty estimation, resampling, or
map calibration. For design-based inference (including post-stratified and model-
assisted estimators), reference samples are required. For model-based inference,
reference samples are preferred but not strictly required, with the requirement
that map unit variances and pairwise covariances estimated using data for the AOI
are available.

Decision 1: Do you have a probability sample for the AOI?

advantages are twofold. First, estimators of the population mean are unbiased,
17
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meaning that over all possible samples that could be realized with the sampling
design, the average of estimates of the mean equals the true value. However, even
with an unbiased estimator the estimate of the mean for any particular sample
may still deviate substantially from the true value, thus the role of the confidence
interval. The second advantage is that estimators of the variance are usually less
complex and less computationally intensive than for model-based inference. In
general, design-based inference is preferred. This is illustrated by the gradient-
coloured arrow in Figure 5.1, where the risk of bias decreases toward the left side
of the tree, corresponding to decisions where a probability sample is available and
design-based inference is prioritized. Probability sample designs include simple
random sampling, systematic sampling, and variations of cluster or two-stage
sampling with simple random or systematic sampling in the first stage. If the area
of interest is a sub-region of the complete map region, design-based inference
requires a probability sample of sufficient size for the area of interest, not just the
complete map region.

Decision 2: Is the reference sample complete?

For a variety of reasons, probability samples may be missing observations. The
key issue is whether the missing observations compromise the probability nature
of the sample and whether the realized sample size is sufficient to achieve the
desired precision of the estimate. Figure 5.2 illustrates a complete probability
sample alongside subsequent cases with missing observations

Decision 3: Do you want sub-population estimates?

Often, estimates for sub-populations may be desired. These may often be activity
classes and administrative regions, but also specific land cover, climatic,
topographic, or forest type classes. If so, a digital geo-spatial layer that depicts the
boundaries of the sub-populations must be available to intersect with the biomass
map.

Decision 4: Are the missing observations missing at random?

A probability sample with observations missing at random still is considered a
probability sample. In this context, missing ‘at random’ means that the missing
observations are unrelated to any observed or unobserved data and/or have no
systematic relationship with any other relevant factors such as map values,
climatic or topographic variables, land cover types etc.

Decision 5: Is the number of missing observations relatively small?

In some cases, the number of missing observations is small in comparison to the
total sample size (Figure 5.2). The key issue is whether the reduced sample size is
still sufficient to achieve the desired precision, even when the post-stratified or
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model-assisted estimators that use the map as auxiliary data are used to increase
precision.

Action 2: The user applies an imputation technique to obtain biomass estimates or
predictions for the missing observations. Imputation in this setting may involve methods
such as substituting missing values with averages or values from comparable plots, or
techniques that rely on models or external information from EO data. For example,
regression can make use of known tree or stand attributes to fill in gaps in biomass data,
and nearest neighbor methods select values based on similarities to other observed
plots. For more complex cases, hierarchical or multiple imputation approaches may
incorporate extra sources of information and allow for better characterization of
uncertainty (see, e.g., Little & Rubin 2019). Further guidance on imputation techniques
and the use of model-based approaches (e.g., those resulting from Scenario 4) to
generate predictions when dealing with nonresponse can be found in the GFOI Methods
and Guidance (MGD) v3.0". Following the imputation step, either the post-stratified or
model-assisted estimator as described in Scenario 1 can be used. However, the
uncertainty of the imputations must be incorporated into the overall estimate of the
variance of the estimate of the population mean, though operational examples on the
subject still need to be explored. If the uncertainty of the imputations is small, the
increase in sample size achieved by imputing for the missing observations may decrease
the variance and increase the precision of the estimate of the mean. If the uncertainty of
the imputations is large, no increase in precision may be realized; in fact, the precision
could be less than for estimates obtained without imputing for the missing observations.
References: Rubin, 1987[45]; Eskelson et al., 2009[46]; McRoberts, 2001[47]; Little & Rubin,
2020[48].

Decision 6: Can sample units with missing observations be grouped into strata?

In some cases, the missing observations can be confined to some specific areas.
The key issue is whether the missing observations can be confined to portions of
the population that can be readily geographically delineated such as
administrative, topographic or climatic regions, or land cover or forest type classes
(see Figure 5.2). If so, then estimates can be obtained as described in Scenario 3.

Decision 7: Does the sample represent the area of interest?

If the missing observations severely compromise the probability nature of the
sample (Figure 5.2), then model-based inference, which does not rely on
probability samples, may be suitable. An important consideration of model-based
inference is that the estimator of the mean is not necessarily unbiased. Sample
balance (characterized by means and variances of the independent variables in
the sample that are comparable to the means and variances in the population)
assures that the sample represents the area of interest and provides a measure

of protection against such bias. Local expert knowledge of the biomes and \t\‘?,? Y

vegetation types in the region may assist to assess the representativeness of the
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sample in the area of interest. If the area of interest is a sub-region of the
complete map region, model-based inference requires a sample that is
representative of the area of interest and/or map unit prediction variance and
pairwise covariance estimates for the area of interest, not just the complete map
region.

Decision 8: Did the map-maker provide map unit variances and covariances?

The 2006 IPCC guidelines[26] advises that estimates be accurate in the sense that
they are neither over- nor underestimated as far as can be judged, and precise in
the sense that uncertainties are reduced as far as practicable. To do so,
uncertainty in the form of variance must first be correctly estimated. With model-
based inference, correct estimation of the variance of the population mean
requires the variances of the predictions for all individual map units and the
covariances of the predictions for all pairwise combinations of map units. To
reduce the risk of bias, the data used to estimate the map unit variances and
covariances must represent the particular area of interest, rather than just the
complete map region or an entirely different region altogether.

Decision 9: Can reference data be collected?

When all possible options of calibrating or validating biomass maps using the
recommendations of the decision tree are exhausted, the user is encouraged to
collect ground reference data. As ground data is obtained, the approach would be
to enter the decision tree at Start (see Figure 5.1) and follow the recommendations
as needed.

" Small number of Large number of Observations missing o
Complete probability observations observations for specific groups Non probabilty
sample e . - sample
missing at random missing at random (i.e. by topography)
Decision 2 Decision 5 Decision 5 Decision 6 Decision 7

Figure 5.2: Visual representation of observations completeness and missingness at
decision points in the tree. Orange dots show available observations, blue dots represent
missing observations, overlaid on a topographic layer.
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Chapter 6. Summary

Recent advances in space-based technologies have enabled the generation of large-area
biomass maps that offer potential to enhance national forest monitoring systems to
produce NGHGI, including REDD+ reporting. These products can improve spatial
coverage of biomass estimates, particularly in remote or under-sampled areas, and
support improved stratification and independent validation of forest biomass
assessments.

Biomass maps developed from space-based data can:
support the design and enhancement of National Forest Inventories (NFIs).

- improve estimation accuracy in regions lacking sufficient ground data.

- serve as an independent reference in support of verification of biomass estimates
where the map-based estimates are of comparable quality with the estimate being
verified.

- contribute to broader forest and ecosystem monitoring beyond climate mitigation
frameworks.

However, limitations and constraints to consider include:

- pixel-level biomass estimates are not recommended for reporting purposes.

- ground data are required for calibration and validation, as well as for verification of
biomass stock change estimates, and for evaluating model performance over time.

- global and regional biomass products may require re-calibration at the national or
subnational level to be fit-for-purpose.

To ensure alignment with IPCC good practice and to enable robust integration into
national systems, the following requires consideration:

- Consistency with national forest definitions, land-use categories, and stratifications.

- Calibration, validation and verification with locally representative ground data.

- Transparent documentation of modelling assumptions, calibration datasets, and
processing methodologies.

- Characterisation of bias and uncertainty, including documentation of how
systematic errors are assessed and corrected.

- Alignment with national emissions/removals reporting structures, including
compatibility with Tier approaches and spatial alignment with land-use classifications.

- Sustainability of operational use, in terms of institutional capacity, space-based
data availability and mission continuity, and technical infrastructure.

While space-based biomass estimation is not yet universally operational across all
contexts, it holds promise. Countries are encouraged to take a cautious, scientifically
grounded approach, leveraging space-based data where appropriate, while upholding
the principles of good practice, transparency, and national relevance.
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Appendix: Country case examples

The following Appendix presents selected country case studies that illustrate how space-
based forest biomass-related datasets have been applied to enhance aboveground
biomass (AGB) estimation and reporting. These examples reflect a range of contexts,
from peer-reviewed scientific studies to official national reports, and demonstrate
different ways countries have integrated remote sensing products with National Forest
Inventory (NFI) data. Each case is linked to a specific Scenario from Chapter 5, or an
application discussed in Chapter 3. While these cases provide practical insights, this
compilation is not exhaustive, acknowledging that additional country efforts are ongoing
or in development.

Mexico
Address NFI Gaps for national
stratum-level AGB estimations

+ Sudan
and{gr:!(ilct?s_ﬂ for speciic Aok Address NFI Gaps for

(Scenario 4) national stratum-level -~
AGB estimations RdNeTale NFIT
Republic of Sudan FRL, 2025 aptagon o r
(Scenario 4) subnational reporting

Nepal ERPD Report, 2018
t (Comparison for verification)

+ Zambia
Paraguay, Defining stratification for
Improved estimation of AGB s Emission Factor estmation
Bullock et al, 2023 Republic of Zambia, 2016
(Scenario 4) (Scenario 2)

Peru, Guyana, Tanzania, Mozambique
Increase precision of national stratum-
level AGB estmations

Malaga el. al, 2024

(Scenario 1 += used for reporting purposes

Figure A.1. Summary of key operational and research examples for the use of space-based forest
biomass-related data as auxiliary information for reporting purposes.

1. Peru, Guyana, Mozambique and Tanzania: Increasing the precision of
subnational AGBD estimates through model-assisted estimation (Scenario 1,
Chapter 5)

Context: Many countries within the tropics struggle to complete or update their NFls,
thereby limiting the quality of their (sub)national forest-related AGBD estimates and
corresponding emission factors. In a cross-country study, the complexities around the
integration of a global biomass map with NFI data under model-assisted estimation
across four tropical country-cases (Peru, Guyana, Mozambique, and Tanzania) were
investigated. These countries represent a range of NFI sampling designs and biomass
densities. The study focused on how best to associate frequent NFI cluster plot
configurations (here defined as two or more plots arranged in some kind of fixed spatial
configuration) with space-based biomass map units. The study aimed to demonstrate the
practical application of model-assisted approaches when using biomass maps in addition \‘;“I"i"

*5‘,— /
to NFl information and their potential to enhance the precision of AGBD estimates. ) 1) 4
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Figure A.2: NFI reference data and the biomass map, to the extent of the population as defined for Peru,
Guyana, Tanzania and Mozambique, in that order. The bottom row details examples of these countries’
plot configurations along with the defined polygons encompassing the clusters (in purple). Adapted from
Malaga et al, 2024[30]

Methodological Approach: To evaluate the contribution of biomass maps to reduce
uncertainty of (sub)national AGBD estimates, model-assisted regression estimators
accommodating each country’s NFI sampling design were implemented and compared to
a baseline approach using only NFI field data. For the purpose of model-assisted
estimation, linear regression models were developed per country and stratum to locally
calibrate the biomass map. Given the widespread use of clustered plots in NFls, a two-
stage model-assisted estimation framework[49], [50] was followed, considering two
different strategies. In Peru and Mozambique, where plot distances were shorter than a
CCl map unit (~100 m), regression models were fitted at the aggregated level, using mean
AGBD values per cluster as the dependent variable and mean map values within polygons
encompassing those same clusters as the independent variables. In contrast, for Guyana
and Tanzania, where plot distances exceeded the biomass map unit size, models were
fitted at the individual level, relating AGBD plot values to spatially corresponding biomass
map unit values. Additionally, harmonization procedures were implemented to ensure
consistency across field-based and model-assisted estimates, for instance, by
accommodating the map to each country's stratification layer and forest definition (when
necessary). The study shows that upon calibration, introducing openly available biomass
products into (sub)national AGBD estimates resulted in a fair gain of precision of 10% to
50% at country-level, aligning with 2006 IPCC Guidelines of reducing uncertainties as far

as practicable[20].

Further resources: Methodological details can be found in Malaga et al, 2024[30].
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2. Sudan: Using the Geostatistical Model-based Estimator to fill gaps in NFI
(Scenario 4, Chapter 5)

Context: Sudan's NFI offers estimates for vegetation and forest assessments, such as
volume and AGB density (AGBD). The NFI uses a systematic grid sampling design, with its
density adjusted based on ecological strata throughout the country. However, large
spatial gaps exist due to the inaccessibility of certain regions, leading to entire sections of
unvisited inventory plots. These gaps violate the intended sampling design of the NFl,
complicating assessments at the stratum, state, or national level.
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Figure A.3: Schematic representation of the integration of EO-derived auxiliary datasets with an
incomplete probability sample of ground reference data that is missing entire areas. Reproduced from
Sudan FRL (in review).

Methodological Approach: To overcome this challenge, EO-derived datasets were used
to provide auxiliary data to augment the NFI. Geostatistical model-based inference was
chosen (Scenario 4, Figure 5.1), wherein a linear relation between (a) forest volume and
biomass estimated at the NFI plots, and (b) auxiliary EO datasets, was developed. The
auxiliary EO datasets, individually, were selected based on their moderately strong

relationship with the NFI-estimated biomass (where available). The developed linear \‘...‘“’

geostatistical model accounts for the underlying spatial autocorrelation observed in NFI- \t\‘ﬁ? W
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the inference technique is that observations of a spatially continuous phenomenon (i.e.
AGBD at the reference plot locations) in close proximity will tend to exhibit similar values.
Hence, geostatistical techniques are employed, relating biomass estimated at reference
plots with auxiliary EO datasets in a model while accounting for the underlying spatial
autocorrelation in biomass across the area of interest. The three important
considerations for the technique are (1) the auxiliary EO datasets used capture spatial
variations across the domain of the country, (2) the visited ground reference plots cover
the range of vegetation types, and their biomass, found over the area of interest, and (3)
any auxiliary EO datasets are acquired or created independent of the ground reference
data. The results of this approach allow “gap-filling”, i.e., the prediction of biomass/carbon
in locations of unvisited NFI plots, and in undersampled areas. This provides a spatially-
dense and spatially-complete set of predictions for the nation, thereby allowing state-
level and national-level estimates to be generated.

Further Resources: Details of the model fitting procedure and source code can be
accessed at Sudan FRL (currently under review).

3. Mexico: Using the Geostatistical Model-based Estimator to fill gaps in NFl and
biomass predictions over specific project sites (Scenario 4, Chapter 5)

Context: Mexico has an advanced forest inventorying system in place, with a nationwide
systematic gridded network of permanent plots as a part of the Inventario Nacional
Forestal y de Suelos (INFyS). Grid sizes vary across forest strata, but are continuous over
vegetated and non-vegetated areas.

Due to various financial and logistical constraints, the third NFI cycle remains incomplete,
leading to spatially irregular, non-random gaps in the probability design across the
country. Besides gap-filling locations of unvisited NFI plots with vegetation biomass
predictions, the country was also interested in predicting biomass over arbitrary regions,
such as nationally demarcated protected areas, terrestrial ecological strata, and
community forest management projects and payment for environmental services.

Methodological Approach: Similar to the case of Sudan, a geostatistical model-based
approach (Scenario 4, Figure 5.1) was developed for Mexico using auxiliary datasets of
forest height and biomass estimates derived from EO. The model is a linear regression
that uses spatially varying regression coefficients to account for the spatial
autocorrelation in the model residuals and model parameter nonstationarity. Therefore,
for any desired prediction location, values of the regression coefficients can be inferred
while accounting for spatial effects. The results enable the prediction of biomass in any
area of interest - single-location or area-wide spatial scales - with traceable uncertainty
analyses. They, hence, fill a gap between national, design-based NFl efforts and the need
for more regional-level to project-level assessments of biomass.

Further Resources: Details of the model fitting procedure and source code can be
accessed at Hunka et al, 2025[44].
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Figure A.4: Schematic representation of the integration of EO-derived auxiliary datasets with an
incomplete probability sample of ground reference data that is missing entire areas. Reproduced from
Hunka et al, 2025[44]
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4. Paraguay: direct estimation of biomass density (Scenario 4, Chapter 5)

Context: Paraguay's forests, particularly within the Chaco region, are globally significant
yet are threatened by high deforestation rates, making the accurate estimation of its
forest biomass critical for national climate reporting and mitigation efforts. To estimate
AGBD for their GHG reporting, Paraguay has undergone one round of their National
Forest Inventory (NFI), and are now challenged with updating their NFI as well as
improving their coverage. A research study explored whether and how EO-based
information could improve the coverage of biomass data and thus the country’s stratum-
level biomass estimates. Current available information from spaceborne-lidar might not
accurately represent structural characteristics of Paraguay’s dry forests, therefore off-
the-shelf spaceborne-lidar estimates are not ideal for estimating biomass in Paraguay's
territory. Hence, the study developed a country-specific biomass map by combining
Paraguay's NFI data with GEDI spaceborne-lidar information, and then applied model-
based inference to produce stratum-wise biomass estimates with improved precision.
Once the biomass map was created, the use of map-unit variances and covariances under
model-based estimation was explored. Model based inference can be pursued when, for
example, map units are very large and spatial co-registration with small reference sample
plots can introduce large additional uncertainty in the relation between AGBD on the plot
and the map unit AGBD.
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Figure A.5: (A) NFI plots either used for the model development or excluded from the analysis, as well as
the forest strata within the country, and Paraguay River presented as a blue dashed line. (B) Predicted
AGBD values using the prediction model. Reproduced from Bullock et al, 2023[51]

Methodological approach: A country-specific biomass mapping model (at 6 km by 6 km)
was developed for Paraguay by matching NFI plots with high-quality spaceborne-lidar
shots (GEDI) within 200 m of each other, to ensure consistency in elevation, forest types
and conditions, including disturbance (Action 1, Chapter 5). The study used GEDI's hybrid

along with the associated variances and pairwise covariances for those tiles. Finally,
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stratum- and national-level biomass means and corresponding standard errors were
estimated using a model-based approach. Standard errors for model-based stratum-level
estimates were, on average, 47% smaller than those estimated with the NFI data alone,
reflecting a substantial gain in precision.

Further Resources: Details of the study can be accessed at Bullock et al, 2023[51].
5. Zambia: post-stratification for emission factors (Scenario 2, Chapter 5)

Context: Zambia's Forest Reference Emission Level (FREL)[53] emphasizes the need for
reporting forest carbon stock estimates representative of their diverse forests. Zambia's
forests, including miombo woodlands and wetlands, exhibit significant variability in
carbon stocks across ecological zones, which are represented in the ILUA Il National
Forest Inventory. To improve the estimation of their deforestation based-emissions,
Zambia post-stratified the country into five strata using a spatially explicit carbon map
estimated from a combination of their NFI data and remotely sensed information.

Carbon Strata t/C/ha

B 0-10 tC/ha

[ 10-20 tC/ha
20-30 tC/ha

[ 30-40 tC/ha

Includes Material © JAXA,METI 2007/08 | lEll > 40 tC/ha

Fig. A.6: Zambia’s AGC map, based on the CART approach using Landsat and SAR for post-stratification
of estimates. Inset: Location of ILUA Il and ILUA I field cluster plots (yellow and red circles, respectively).
Adapted from Zambia’s FREL Report[53]

Methodology: To address this, the country combined Zambia’s ILUA Il National Forest
Inventory data with optical and Synthetic Aperture Radar (SAR) remotely sensed data to
estimate an aboveground carbon (AGC) map. The methodology integrated field data,
remote sensing, and classification and regression trees (CART) to come up with carbon
predictions beyond NFI sampling locations. Plot-level carbon stocks were estimated from
field data, collected through systematic sampling. Optical (e.g., Landsat) and SAR (e.g.,

ALOS PALSAR) data were used to map forest cover and structure. CART models were \t\':,

j, 4
(4
=N/

applied to predict AGBD by linking field data with remote sensing variables like spectral
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indices and backscatter values. A wall-to-wall map of CART-predicted AGBD was then
created, which was used for post-stratifying forest areas into five homogeneous classes
based on per ha carbon stock values. Per-stratum emission factors were then estimated
from the plot-level AGBD information within each stratum, improving accuracy by
addressing spatial variability and reducing uncertainties.

Further resources: Further details can be found in Zambia’s FREL Report[53].

6. Nepal: Independent comparison for the estimation of emission factors for Terai
Arc Landscape (Application: comparison for verification, Chapter 3)

Context: Nepal's Emission Reduction Program (ERPD) is a key component of its National
REDD+ Strategy. Aligned with multiple national policies, the ERPD targets the Terai Arc
Landscape (TAL), a region of rich biodiversity and productive forests but facing
deforestation and forest degradation pressures. In order to improve their mapping of
forest-related activity data to include forest degradation, they currently make use of the
Morphological Spatial Pattern Analysis Tool (MSPA), which classifies each pixel based on
the surrounding landscape. This results in forest pixels being divided into Intact and Edge
pixels, which are expected to store different amounts of biomass. The Programme
wanted to have separate biomass estimates for both Intact and Edge classes (as defined
by MSPA tool) using National Forest Inventory as input data. However, before adopting a
post-stratification approach using the corresponding NFI data within TAL and the MSPA
classification, additional verifications were needed to confirm different biomass
estimates in their strata of interest (Intact and Edge).

NFI Biomass Estimates LiDAR Derived Biomass Estimates
500 500

400 400

300 300

Tl m |

100 . 100 =
o L 1 0 ; €L 1

-100 -100

s No_Forest ®Intact @ Edge s No Forest mIntact ®Edge

Figure A.7 Comparison of forest biomass estimates in the Terai Arc Landscape (TAL) for No Forest,
Intact and Edge strata, using National Forest Inventory plots (left) and lidar-derived estimates (right).
Adapted from Nepal ERPD[54]

Methodology: To estimate forest biomass for Intact and Edge strata within TAL, total
biomass stocks were recalculated into Intact and Edge classes, following Birigazzi et
al[55]. Greater biomass values were observed in the Intact strata in comparison to the
Edge strata (Figure A.7, left). However, to assess the likelihood of systematic errors in the

N2 NE
estimates due to the adaptation of the NFI design into the ERPD area of interest, a _\_\\35;2%
\ 1 (Y “

-
FE ]

comparison was made with lidar estimates. Lidar-based estimates were derived from an
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airborne laser scanning (ALS) campaign covering 5% of the Terai Arc Landscape, with
systematically sampled blocks and calibration plots used to model above-ground
biomass (AGB)[56]. Lidar-based estimates showed a similar pattern as the NFI-based
estimates of greater carbon in the Intact strata than those in the Edge strata (Figure A.7,
right). This gave increased confidence in the use of NFI data for the EPRD forest strata.

Further Resources: Further details can be found in Birigazzi et al[55], Kauranne et al[56],
and Nepal's ERPD report[54].
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