Chapter 7   References Previous topic Parent topic Child topic Next topic

Arevalo, P. (2016). A prototype MRV system for the Colombian Amazon compliant with IPCC Approach 3 for securing activity data. Boston, MA: Doctoral Disseration, Boston University.
Asner, G.P., Knapp, D.E., Broadbent, E.N., Oliveira, P.J.C., Keller, M., and Silva, J.N. (2005). Selective Logging in the Brazilian Amazon. Science. 310:480.
Asner, G.P., Powell, G.V.N., Mascaro, J., Knapp, D.E., Clark, J.K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M. & Hughes, R.F. (2010). High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences, 107: 16738-16742.
Australian Greenhouse Office (AGO). (2002). Greenhouse gas emissions from land use change in Australia: an Integrated Application of the National Carbon Accounting System.
Australian Government, (2011). The land sector in the National inventory – overview Opens in new window. Australian National Greenhouse Accounts. National Inventory.
Baldauf, T. (2013). Monitoring Reduced Emissions from Deforestation and Forest Degradation (REDD+): Capabilities of High-Resolution Active Remote Sensing. PhD Thesis, University of Hamburg.
Ballhorn, U., Siegert, F., Mason, M., & Limind, S. (2009): Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands; PNAS.
Barthelmes, A., Ballhorn, U. & Couwenberg, J. (2015). Practical guidance on locating and delineating peatlands and other organic soils in the tropics Opens in new window. Consulting Study 5 of the High Carbon Stock Study, 120 pp.
Birdsey, R., Angeles-Perez, G., Kurz, W.A., Lister, A., Olguin, M., Pan, Y., Wayson, C., Wilson, B., & Johnson, K. (2013). Approaches to monitoring changes in carbon stocks for REDD+. Carbon Management, 4(5): 519–537
Böttcher, H., Eisbrenner, K., Fritz, S., Kindermann, G., Kraxner, F., McCallum, I., & Obersteiner, M. (2009). An assessment of monitoring requirements and costs of 'Reduced Emissions from Deforestation and Degradation'. Carbon Balance and Management, 4:7.
Box, G.E.P, Jenkins, G.M., Reinsel, G.C. (1994). Time Series Analysis. Forecasting and Control. 4th Edition. Wiley & Sons. 784p. ISBN: 978-0-470-27284-8
Brack, C., Richards, G., & Waterworth, R.M. (2006). Integrated and comprehensive estimation of greenhouse gas emissions from land systems. Sustainability Science, 1(1): 91-106.
Breiman, L. (2001). Random Forests. Machine Learning. 45(1):5-32.
Brunet-Navarro, P., Jochheim, H., & Muys, B. (2016), Modelling carbon stocks and fluxes in the wood product sector: a comparative review. Global Change Biology, 22(7):2555-69.
Bryan, J.E., Shearman, P.L., Asner, G.P., Knapp, D.E., Aoro, G., & Lokes, B. (2013). Extreme Differences in Forest Degradation in Borneo: Comparing Practices in Sarawak, Sabah, and Brunei. PLoS ONE 8:7: e69679
Burslem, D.F.R.P & Ledo, A., (2015). Review of forest inventory methods for estimating forest biomass stocks. Consulting study 1. Opens in new window High Carbon Stock science study 39 pp.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propogation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society London B. 359:409–420.
Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 145:78–99.
Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B. & Vielledent, G. (2014). Improved allometric models to estimate the above-ground biomass of tropical trees. Global Change Biology. 20:3177-3190.
Chen Opens in new window, J., Jönsson Opens in new window, P., Tamura Opens in new window, M., Gu, Z., Matsushita Opens in new window, B., Eklundh Opens in new window, L. (2004). A simple method for reconstructing a high-quality NDVI time series data set based on the Savitzky–Golay filter. Remote Sensing of Environment. 91(3-4):332-344.
Cienciala, E., Tomppo, E., Snorrason, A., Broadmeadow, M., Colin, A., Dunger, K., Exnerova, Z., Lasserre, B., Petersson, H., Priwitzer, T., Peña, G.S., & Ståhl G. (2008). Preparing emission reporting from forests: use of national forest inventories in European countries. Silva Fennica. 42(1): 73-88.
Cochran, W.G. (1977). Sampling techniques, 3rd ed. New York: Wiley. 428 pp
Cohen, W.B., Yang, Z., & Kennedy, R. E. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. Remote Sensing of Environment. 114(12):2911–2924.
Cohen, W.B., Yang, Z., Stehman, S.V., Schroeder, T.A., Bell, D.M., Masek, J.G., & Meigs, G.W. (2016). Forest disturbance across the conterminous United States from 1985–2012: The emerging dominance of forest decline. Forest Ecology and Management. 360:242-252.
DeVries, B., Decuyper, M., Verbesselt, J., Zeileis, A., Herold, M., Joseph, S. (2015) Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sensing of Environment. 169:320-334.
Ene, L.T., Næsset, E., Gobakken, T., Gregoire, T.G., Ståhl, G. & Nelson, R. (2012). Assessing the accuracy of regional LIDAR-based biomass estimation using a simulation approach. Remote Sensing of Environment. 123:579-592.
FAO & JRC. (2012). Global forest land-use change 1990–2005, by E.J. Lindquist, R. D’Annunzio, A. Gerrand, K. MacDicken, F. Achard, R. Beuchle, A. Brink, H.D. Eva, P. Mayaux, J. San-Miguel-Ayanz & H-J. Stibig. FAO Forestry Paper No. 169. Food and Agriculture Organization of the United Nations and European Commission Joint Research Centre. Rome, FAO.
Fishman, G. 1996. Monte Carlo: Concepts, algorithms, and applications. New York. N.Y Springer.
Fry, J.A., Coan, M.J., Homer, C.G., Meyer, D.K., & Wickham, J.D. (2009). Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit product: U.S. Geological Survey Open-File Report 2008–1379, 18 pp.
Gao, Y., & Francois Mas, J. (2008). A Comparison of the Performance of Pixel Based and Object Based Classifications over Images with Various Spatial Resolutions. Online Journal of Earth Sciences. 2:27-35.
GEO (2011) Observations, Group on Earth. GEO-FCT Product Development Team Technical Status Report v2.0. s.l.  GEO.
Goodman, L.A. 1960, On the exact variance of products. Journal of the American Statistical Association. 55:708-713.
Goslee, K.M., Brown, S., Walker, S.M., Murray, L. & Tepe, T. (2015). Review of aboveground biomass estimation techniques. Consulting Study 3. Opens in new window High Carbon Stock science study. 31pp
GPG 2000, GPG2003, 2006GL see Intergovernmental Panel on Climate Change
Gregoire, T.G., Ståhl, G., Næsset, E., Gobakken, T., Nelson, R., & Holm, S. (2011). Model-assisted estimation of biomass in a LIDAR sample survey in Hedmark County, Norway. Canadian Journal of Forest Research. 41:83-95.
Griffiths, P., Kuemmerle, T., Baumann, M., Radeloff, V. C., Abrudan, I. V., Lieskovsky, J., Munteanu, C.; Ostapowicz, K., & Hostert, P. (2014). Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment. 151:72–88.
Hansen, M.C., Potapov, P.V, Moore, R., Hancher, M., Turubanova, S.A, Tyukavina, A., Thau, D., Stehman, V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., & Townshend, J.R.G. (2013). High-resolution global maps of 21st-century forest cover change. Science. 342(6160): 850–3. Data available online Opens in new window.
Heikkinen, J., Tomppo, E., Freidemschuss, A., Weiss, P., Hylen, G., Kušar, G., McRoberts, R., Kändler, G., Cienciala, E., Petersson, H., & Ståhl, G. (2012). Interpolating and extrapolating information from periodic forest surveys for annual greenhouse gas reporting. Forest Science. 58(3): 236-247.
Hoekman, D. (2012). Key Science Questions: Optimising information extraction from C-band SAR. Arusha, Tanzania : GEO FCT Science and Data Summit #3.
Holden, C.E. (2015). Yet Another Time Series Model (YATSM Opens in new window). Zenodo. 10.5281/zenodo.17129.
Holecz, F., Barbieri, M., Cantone, A., Pasquali, P., Monaco, S. (2010). K&C Science Report – Phase 1 Forest Theme – Synergistic use of ALOS PALSAR, ENVISAR ASAR and Landsat TM/ETM+ data for land cover and change mapping. Japan: JAXA, 2010. The ALOS Kyoto & Carbon Initiative – Science Team Reports Phase 1.
Houghton, R.A., F. Hall, F., & Goetz, S.J. (2009). Importance of biomass in the global carbon cycle, J. Geophys. Res., 114, G00E03,
Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., & Vogelman, J.E. (2010). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment. 114(1):183–198.
Huntzinger, D.N., Post, W.M., Wei, Y., Michalak, A.M., West, T.O., Jacobson, A.R., Baker, I.T., Chen, J.M., Davis, K.J., Hayes, D.J., Hoffman, F.M., Jain, A.K., Liu, S., McGuire, A.D., Neilson, R.P., Potter, Chris, Poulter, B.,Price, David, Raczka, B.M., Tian, H.Q., Thornton, P., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., Zhao, M., and Cook, R. (2012). North American Carbon Project (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecological Modelling. 232:144–157.
Intergovernmental Panel on Climate Change (IPCC). (2000). Penman J., Kruger D., Galbally I., Hiraishi T., Nyenzi B., Emmanuel S., Buendia L., Hoppaus R., Martinsen T., Meijer J., Miwa K., and Tanabe K. (Eds). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IPCC/OECD/IEA/IGES, Hayama, Japan.
Intergovernmental Panel on Climate Change (IPCC) (2003). Penman J., Gytarsky M., Hiraishi T., Krug, T., Kruger D., Pipatti R., Buendia L., Miwa K., Ngara T., Tanabe K., and Wagner F (Eds). Good Practice Guidance for Land Use, land- Use Change and Forestry IPCC/IGES, Hayama, Japan.
Intergovernmental Panel on Climate Change (IPCC) (2006). Eggleston, S., Buendia L., Miwa K., Ngara T., and Tanabe K. (Eds). 2006 IPCC Guidelines for National Greenhouse Gas Inventories IPCC/IGES, Hayama, Japan.
Intergovernmental Panel on Climate Change (IPCC) (2014). 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol. Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds) Published: IPCC, Switzerland.
Intergovernmental Panel on Climate Change (IPCC) (2014). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.
Irish, R.R., Barker, J.L., Goward, S.N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment (ACCA) Algorithm. Photogrammetric Engineering & Remote Sensing. 72(10):1179–1188.
Kandel, P.N., Awasthi, K, Shrestha, S.M., Hawkes, M., Kauranne, T., Gautam, B., Gunia, K, Dinerstein, E. (2013). Monitoring aboveground forest biomass: a comparison of cost and accuracy between LIDAR-Assisted Multisource Programme (LAMP) and field-based Forest Resource Assessment (FRA) in Nepal. International Conference on Forest, People and Climate: Changing Paradigm. 28-30 August, Pokhara, Nepal.
Kennedy, R.E., Cohen, W.B., & Schroeder, T.A. (2007). Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sensing of Environment. 110:370–386.
Kennedy, R.E., Yang, Z., & Cohen, W.B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. Remote Sensing of Environment. 114(12):2897–2910.
Kennedy, R.E., Andréfouët, S., Cohen, W.B., Gómez, C., Griffiths, P., Hais, M., Healey, S.P., Helmer, E.H., Hostert, P., Lyons M.B., Meigs, G.W., Pflugmacher, D., Phinn, S.R., Powell, S.L., Scarth, P. Sen, S., Schroeder, T.A., Schneider, A., Sonnenschein, R., Vogelmann, J.E., Wulder, M.A, and Zhu, Z. (2014). Bringing an ecological view of change to Landsat-based remote sensing. Frontiers in Ecology and the Environment. 12(6):339–346.
Kim, D., Sexton, J.O., Noojipady, P., Huang, C., Anand, A., Channan, S., Feng, M., & Townshend, J.R.G. (2014). Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sensing of Environment. 155:178–193.
Köhl, M., Magnussen, S.S. & Marchetti, M. (2006). Tropical Forestry: Sampling methods. Remote Sensing and GIS multi-resource forest inventory. Springer.
Köhl, M., Scott, C.T., Lister, A.J., Demon, I., & Plugge, D. (2015). Avoiding treatment bias of REDD+ monitoring by sampling with partial replacement. Carbon balance and Management. 10:11.
Kurz, W.A., Stinson, G., Rampley, G.J., Dymond, C.C., & Neilson, E.T. (2008). Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences. 105: 1551-1555.
Kurz, W.A., Dymond, C.C., White, T.M., Stinson, G., Shaw, C.H., Rampley, G.J., Smyth, C., Simpson, B.N., Neilson, E.T., Trofymow, J.A., Metsaranta, J., & Apps, M.J. (2009) CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Opens in new window Ecological Modelling. 220: 480-504.
Kurz,W.A., Birdsey, R.A., Mascorro, V.S., Greenberg, D., Dai, Z., Olguín, M., & Colditz, R. (2016). Integrated Modeling and Assessment of North American Forest Carbon Dynamics: Tools for monitoring, reporting and projecting forest greenhouse gas emissions and removals. (Summary Report) Montreal, Canada: Commission for Environmental Cooperation. 23 pp.
Lambin, E.F., & Strahlers, A.H. (1994). Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sensing of Environment. 48(2):231-244.
Lawrence, M., McRoberts, R.E., Tomppo, E., Gschwantner, T., & Gabler, K. (2010). Comparisons of national forest inventories. In: Tomppo, E., Gschwantner, T., Lawrence, M., & McRoberts, R.E. (eds). National forest inventories: pathways to common reporting. Dordrecht, Springer. pp. 19-32.
Lo, E. (2005). Gaussian error propagation applied to ecological data: Post-ice-storm-downed woody biomass. Ecological Monographs. 75:451-466.
Loetsch, F., & Haller K.E. (1964). Forest Inventory. Volume 1. Verlagsgesellschaft. Munchen; Scott, C.T. 1984. Forest Science 30:157-166.
Lucas, R., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., Kelley, J., Bunting, P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M., Eyre, T., Laidlaw, M., & Shimada, M. (2010). An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing. 3:576-593.
Margono, B.A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina, A., Baccini, A., Goetz, S., & Hansen, M.C. (2012). Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environmental Research Letters. 7(3):034010.
Mascorro, V.S., Coops, N.C., Kurz, W.A., & Olguín, M. (2015). Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates. Carbon Balance and Management. 10(1):30.
Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., & Lim, T.-K. (2006). A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters. 3(1):68–72.
de Mesquita Jnr, H.N. (2011). Law enforcement deforestation assessment. Japan: The ALOS Kyoto and Carbon Initiative - Science Team Reports Phase 2 (2009-2011).
McRoberts, R.E., Holden, G.R., Nelson, M.D., Liknes, G.C., & Gormanson, D.D. (2006). Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service. Canadian Journal of Forest Research. 36:2968-2980.
McRoberts, R.E. (2010). Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote Sensing of Environment. 114:1017-1025.
McRoberts, R.E. (2013). Post-classification approaches to estimating change in forest area. Remote Sensing of Environment. 151:149-156. 
McRoberts, R.E., Gobakken, T., & Næsset, E. (2013). Inference for LIDAR-assisted estimation of forest growing stock volume. Remote Sensing of Environment. 128:268-275.
McRoberts, R.E. (2014). Post-classification approaches to estimating change in forest area. Remote Sensing of Environment. 151:149-156.
McRoberts, R.E., Vibrans, A.C, Sannier, C., Næsset, E., Hansen, M.C., & Lingner, D.V. (2016). Methods for evaluating the utilities of local and global maps for increasing the precision of estimates of subtropical forest area. Canadian Journal of Forest Research. 10:924-932.
Mitchell, 2014. Joint GFOI/GOFC-GOLD R&D Expert Workshop on approaches to monitoring forest degradation for REDD+ Opens in new window. University of Wageningen. The Netherlands – Oct 1-3, 2014.
Molto, Q., Rossi, V., & Blanc, L. (2013). Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution. 4(2):175-183.
Næsset, E., Bollandsås, O.M., Gobakken, T., Gregoire, T.G., & Ståhl. G. (2013). Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LIDAR: A case study with post-stratification to provide activity data. Remote Sensing of Environment. 128:299-34.
Olofsson, P., Foody, G.M., Stehman, S.V., & Woodcock, C.E. (2013). Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment. 129:122-131.
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., & Wulder, M.A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment. 148:42-57.
Olofsson, P., Holden, C. E., Bullock, E. L., & Woodcock, C. E. (2016). Time series analysis of satellite data reveals continuous deforestation of New England since the 1980s. Environmental Research Letters. 11(6):064002.
Päivinen, R., & Yli-Kojola. H. (1989). Permanent sample plots in large-area forest inventory. Silva Fennica. 23:243-252.
Pandey, D. (2008). India's biennial forest cover mapping program - National Forest Inventory in India. Paris, France : COMIFAC Workshop on Monitoring of reduction of emissions from forest degradation.
Paul, K.I., Roxburgh, S.H., Chave, J., England, J.R., Zerihun, A., Specht, A., Lewis, T., Bennett, L.T., Baker, T.G., Adams, M.A., Huxtable, D., Montagu, K.D., Falster, D.S., Feller, M., Sochacki, S., Ritson, P., Bastin, G., Bartle, J., Wildy, D., Hobbs, T., Larmour, J., Waterworth, R., Stewart, H.T.L., Jonson, J., Forrester, D.I., Applegate, G., Mendham, D., Bradford, M., O'Grady, A., Green, D., Sudmeyer, R., Rance, S.J., Turner, J., Barton, C., Wenk, E.H., Grove, T., Attiwill, P.M., Pinkard, E., Butler, D., Brooksbank, K., Spencer, B., Snowdon, P., O'Brien, N., Battaglia, M., Cameron, D.M., Hamilton, S., McAuthur, G., & Sinclair, J. (2016). Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Global Change Biology. 22(6):2106–2124.
Pérez-Cruzado, C., Fehrmann, L., Magdon, P., Cañellas, I., Sixto, H., & Kleinn, C. (2015). On the site-level suitability of biomass models. Environmental Modelling & Software. 73:14-26.
Picard, N., Bosela, F.B., & Rossi, V. (2015). Reducing the error in biomass estimates strongly depends on model selection. Annals of Forest Science. 72:811-823.
Pilli, R., Grassi, G., Kurz, W., Viñas, R., & Guerrero, N. (2016). Modelling forest carbon stock changes as affected by harvest and natural disturbances. I. Comparison with countries’ estimates for forest management. Carbon Balance and Management. 11:5.
Reiche, J., Verbesselt, J., Hoekman, D., & Herold, M. (2015). Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sensing of Environment. 156:276–293.
Roxburgh, S.R., Paul, K.I., Clifford, D., England, J.R., & Raison, R.J. (2015). Guidelines for constructing allomtric models for the prediction of woody biomass: How many individuals to harvest? Ecosphere. 6(3):38.
Roy, D.P., Ju, J., Kline, K., Scaramuzza, P.L., Kovalskyy, V., Hansen, M., Loveland, T.R., Vermot, E., & Zhang, C. (2010). Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sensing of Environment. 114(1):35–49.
Sannier, C., McRoberts, R.E., Fichet, L.-V., & Makaga, E. (2014). Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion of deforestation in Gabon. Remote Sensing of Environment. 151:138-148.
Sannier, C., McRoberts, R.E., & Fichet, L.-V. (2016). Suitability of Global Forest Change data to report forest cover estimates at national level in Gabon. Remote Sensing of Environment. 173:326-338.
Särndal, C.-E., Swensson, B., & Wretman, J. (1992). Model assisted survey sampling. Springer, New York. 693 pp.
Scaramuzza, P.L., Bouchard, M.A., & Dwyer, J.L. (2012). Development of the Landsat Data Continuity Mission Cloud-Cover Assessment Algorithms. IEEE Transactions on Geoscience and Remote Sensing. 50(4):1140–1154.
Smyth, C.E., Stinson, G., Neilson, E., Lemprière, T.C., Hafer, M., Rampley, G.J., & Kurz, W.A. (2014). Quantifying the biophysical climate change mitigation potential of Canada's forest sector. Biogeosciences. 11:441-480. Opens in new window
Souza Jr, C. (2006). Brazil's PRODES system - Mapping and monitoring deforestation and forest degradation in the Brazilian Amazon. Jena, Germany : GOFC-GOLD Symposium on Forest and Land Cover Observations.
Souza Jr, C, Siqueira J.V., Sales, M.H., Fonseca, A.V., Ribeiro J.G., Numata, I., Cochrane, M.A., Barber, C.P., Roberts, D.A,. & Barlow, J. (2013). Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sensing. 5(11):5493-5513.
Ståhl, G., Heikkinen, J., Petersson, H., La, J.R., & Holm, S. (2014). Sample-Based Estimation of Greenhouse Gas Emissions From Forests-A New. Approach to Account for Both Sampling and Model Errors. Forest Science. 60:3-13
Stehman, S.V. (2013). Estimating area from an accuracy assessment error matrix. Remote Sensing of Environment. 132:202-211.
Stephens, P.R., Kimberley, M.O., Beets, P.N., Paul, T.S.H., Searles, N., Bell, A., Brack, C., & Broadley, J. (2011). Airborne scanning LiDAR in a double sampling forest carbon inventory. Remote Sensing of Environment. 117:348-357.
Stinson, G., Kurz, W.A., Smyth, C.E., Neilson, E.T., Dymond, C.C., Metsaranta, J.M., Boisvenue, C., Rampley, G.J., Li, Q., White, T.M., & Blain, D. (2011). An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Change Biology. 17:2227–2244.
Tomppo, E., Gschwantner, T., Lawrence, M., & McRoberts, R.E. (eds.). (2010). National forest inventories: pathways for common reporting. Heidelberg: Springer. 611 p.
Trofymow, J.A., Stinson, G., & Kurz, W.A. (2008). Derivation of a spatially explicit 86-year retrospective carbon budget for a landscape undergoing conversion from old-growth to managed forests on Vancouver Island, BC. Forest Ecology and Management. 256:1677–1691.
Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment. 114:106-115.
Verbesselt, J., Zeileis, A., & Herold, M. (2012). Near real-time disturbance detection using satellite image time series. Remote Sensing of Environment. 123:98–108.
Walker, W.S., Stickler, C.M., Kellndorfer, J.M., Kirsch, K.M., & Nepstad, D.C. (2010). Large-area classification and mapping of forest and land cover in the Brazilian Amazon: a comparative analysis of ALOS/PALSAR and Landsat data sources. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 3:594-604.
Waterworth, R.M., & Richards, G.P. (2008). Implementing Australian forest management practices into a full carbon accounting model. Forest Ecology and Management. 255:2434-2443.
Winrock International. (2012). A Pilot Study to Assess Forest Degradation Surrounding New Infrastructure. Report submitted to the Guyana Forestry Commission February 2012.
Woodcock, C.E., Macomber, S.A., Pax-Lenney, M., & Cohen, W.B. (2001). Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors. Remote Sensing of Environment. 78(1): 94-203.
Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., & Wynne, R. (2008). Free access to Landsat imagery. Science. 320(5879):1011-1012.
Wulder, M.A,, White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B., Fosnight, G., Shaw, J., Masek, J.G., & Roy, D.P. (2015). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment
Xin, Q., Olofsson, P., Zhu, Z., Tan, B., & Woodcock, C.E. (2013). Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sensing of Environment. 135(86):234–247.
Zhuravleva, I., Turubanova, S., Potapov, P., Hansen, M., Tyukavina, A., Minnemeyer, S., Laporte, N., (2013). Satellite-based primary forest degradation assessment in the Democratic Republic of the Congo, 2000–2010. Environmental Research Letters. 8(2):024034.
Zhu, Z., Woodcock, C.E., & Olofsson, P. (2012). Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sensing of Environment. 122:75–91.
Zhu, Z., & Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment. 118:83–94.
Zhu, Z., & Woodcock, C.E. (2014a). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment. 144:152–171.
Zhu, Z., & Woodcock, C.E. (2014b). Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment. 152:217–234.
Zhu, Z., Wang, S., & Woodcock, C.E. (2015). Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment. 159:269–277.